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Abstract— Motivated in part by the problem of secure multi-
cast distributed storage, we analyze secrecy rates for a channel in
which two transmitters simultaneously multicast to two receivers
in the presence of an eavesdropper. Achievable rates are calcu-
lated via extensions of a technique due to Chia and El Gamal
and the method of output statistics of random binning. Outer
bounds are derived for both the degraded and non-degraded
versions of the channel, and examples are provided in which
the inner and outer bounds meet. The inner bounds recover
known results for the multiple-access wiretap channel, broadcast
channel with confidential messages, and the compound MAC
channel. An auxiliary result is also produced that derives an
inner bound on the minimal randomness necessary to achieve
secrecy in multiple-access wiretap channels.

Index Terms— Multicasting, compound channel, confidential
messages, randomness constraint, stochastic encoder, wire-tap
channel.

I. INTRODUCTION

WE STUDY the multiuser secure multicast problem
(Fig. 1), more specifically, when two transmitters mul-

ticast messages securely to two receivers in the presence
of an eavesdropper. All senders, receivers, and eavesdropper
are at different terminals. This problem is motivated in part
by secure access of multiple users to data in a distributed
cache [1], [2]. Another application of the considered model
is a common situation in cellular networks, in which a user
is in the coverage range of two different base stations [3],
[4]. This problem is also equivalent to a one-transmitter two-
receiver compound channel with confidential messages with
two different states [5]. It has been known [6] that problems
involving compound channels have an equivalent multicast
representation, in which the channel to each multicast receiver
is equivalent to one of the states of the compound channel.1
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1The problem studied herein is the secrecy counterpart of the classical

problem posed by Ahlswede [7], which proved highly influential for the MAC
channel [8] and the interference channel [9].

Fig. 1. Two-sender two-receiver channel with an eavesdropper.

This paper takes a two-pronged approach to the analysis
of the network mentioned above, producing a number of new
results and insights. In Section III, we present an analysis
inspired by the work of Chia and El Gamal [10], which uses
Marton coding and indirect decoding (also known as non-
unique decoding) [11] to achieve an improved secrecy rate
for the transmission of one common message to two receivers
that may experience different channel statistics. In extending
the method of Chia and El Gamal to multiple transmitters,
we introduce a two-level Marton-type coding with associated
non-unique decoding.

In Section VI, we employ the method of output statistics of
random binning (OSRB) [12] for analyzing the two-transmitter
two-receiver problem (see also [13] for a related approach).
OSRB analyzes channel coding problems by conversion to a
related source coding problem, where it tests achievability by
probability approximation rather than counting arguments on
typical sets, followed by a reverse conversion to complete the
analysis. OSRB is well suited for secrecy problems because
secrecy is tightly related to probability approximation. OSRB
encoding is purely by random binning and is enabled by
(and named after) the following asymptotic result: apply two
independent random binning schemes on the same set and take
a random sample from the set. The two bin indices correspond-
ing to the random sample are statistically independent as long
as binning rates are sufficiently small [12]–[14]. We extend
the tools and techniques of OSRB to match the requirements
of the two-transmitter multicast problem.

The different parts of this paper complement each other,
producing a more complete picture in the understanding of the
problem of multi-transmitter secure multicast. The extension
of the method of Chia and El Gamal is utilized to highlight
the minimal amount of randomness required to achieve secrecy
rates over the multiple-access wiretap channel, and that therein
channel prefixing can be replaced with superposition, in a
manner reminiscent of Watanabe and Oohama [15] for min-
imizing the randomness resources for secrecy encoding. The
analysis based on OSRB generates the strong secrecy, which
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interestingly has an expression that is a superset of the
achievable region under weak secrecy calculated in the first
part. Furthermore, the expression for the strong secrecy region
can be greatly simplified via a constraint found in the weak
secrecy analysis, highlighting the synergy between the two.
More broadly, the developments in these two parts each offer
techniques and insights that can potentially be useful in a wider
class of problems.

Outer bounds for degraded and non-degraded channels are
derived and shown to be tight against inner bounds in some
special cases.

A brief outline of the related literature is as follows.
Multicasting with common information in the presence of an
eavesdropper has been studied in [17], [18], deriving inner
bounds on the secrecy capacity, and in some special cases also
deriving the secrecy capacity region. Salehkalaibar et al. [17]
studied a one-receiver, two-eavesdropper broadcast channel
with three degraded message sets. Ekrem and Ulukus [18]
studied the transmission of public and confidential messages
to two legitimate users, in the presence of an eavesdropper.
Benammar and Piantanida [19] calculated the secrecy capacity
region of some classes of wiretap broadcast channels.

The MAC wiretap channel has been investigated
in [20]–[27]. In [20], a discrete memoryless MAC with
confidential messages has been studied that consists of a
MAC with generalized feedback [28] where each user’s
message must be kept confidential from the other. The
multiple access wiretap channel [21], [22], [26] consists of a
MAC with an additional channel output to an eavesdropper.
In [21], [22], achievable rate regions for the secrecy capacity
region have been derived. Secrecy in the interference channel
and broadcast channel has been studied in [29], where inner
and outer bounds for the broadcast channel with confidential
messages and the interference channel with confidential
messages have been compared.

Beside improving and modifying the achievability proof for
the weak secrecy regime in [16] and providing details of the
proof for Lemma 1, this version studies the two multicast
channel with confidential messages under the strong secrecy
regime. Also, this version studies the multiple access wiretap
channel under randomness constraint.

II. PRELIMINARIES

Throughout this paper, random variables are denoted by
capital letters and their realizations by lower case letters.
The set of ε−strongly jointly typical sequences of length n,
according to pX,Y , is denoted by T (n)

ε (pX,Y ). For convenience
in notation, whenever there is no danger of confusion, typ-
icality will reference the random variables rather than the
distribution, e.g., T (n)

ε (X, Y ). The set of sequences {xn :
(xn, yn) ∈ T (n)

ε (X, Y )} for a fixed yn , when the fixed sequence
yn is clear from the context, is denoted with the shorthand
notation T (n)

ε (X |Y ). Superscripts denote the dimension of a
vector, e.g., Xn . The integer set {1, . . . , M} is denoted by
[[1, M]], and X[i: j ] indicates the set {Xi , Xi+1, . . . , X j }. The
cardinality of a set is denoted by | · |. We utilize the total
variation between Probability Mass Function (PMF), defined
by ||q − p||1 = 1

2

∑
x |p − q|. Following Cuff [30] and

[12, Remark 1], we use the concept of random PMF denoted
by capital letters (e.g. PX ).

Definition 1: A (M1,n, M2,n , n) code for the considered
model (Fig. 1) consists of the following:

i) Two message sets Wi = [[1, Mi,n ]], i = 1, 2, from which
independent messages W1 and W2 are drawn uniformly
distributed over their respective sets.

ii) Stochastic encoders fi , i = 1, 2, which are specified by
conditional probability matrices fi (Xn

i |wi ), where Xn
i ∈

X n
i , wi ∈ Wi are channel inputs and private messages,

respectively, and
∑

xn
i

fi (xn
i |wi ) = 1. Here, fi (xn

i |wi ) is
the probability of the encoder producing the codeword xn

i
for the message wi .

iii) A decoding function φ1 : Yn
1 → W1 × W2 that

assigns (ŵ1, ŵ2) ∈ [[1, M1,n]]× [[1, M2,n]] to the received
sequence yn

1 .
iv) A decoding function φ2 : Yn

2 → W1 × W2 that
assigns (w̌1, w̌2) ∈ [[1, M1,n]]× [[1, M2,n]] to the received
sequence yn

2 .
The probability of error is given by:

Pe � P
({(Ŵ1, Ŵ2) �= (W1, W2)} ∪ {(W̌1, W̌2) �= (W1, W2)}

)
.

Definition 2: A rate pair (R1, R2) is said to be achievable if
there exists a sequence of (M1,n, M2,n , n) codes with M1,n ≥
2nR1 , M2,n ≥ 2nR2 , so that Pe −−→

n→∞ 0 and [31]

1

n
I(W1, W2; Zn) −−→

n→∞ 0 for the weak secrecy regime, (1)

I(W1, W2; Zn) −−→
n→∞ 0 for the strong secrecy regime. (2)

Definition 3: For any PMFs pX and qX over X we denote
‖pX − qX‖1 < ε with pX ≈ε qX . Similarly, for any random
PMFs PX and QX over X we denote ‖PX − QX‖1 < ε with
PX ≈ε QX . The same notation applies for the sequential
PMFs (e.g. ‖pXn − qXn‖1 < ε is denoted by pXn ≈ε qXn ).

III. ACHIEVABLE RATE REGION UNDER

THE WEAK SECRECY

We start with a lemma that employs Marton coding with
indirect decoding in a MAC structure and produces an entropy
bound needed in the secrecy analysis. Its basic idea can be
highlighted as follows: given Xn , if we independently produce
2nR random codevectors Y n , we will have approximately
2nR−I(Xn;Y n) jointly typical pairs, i.e., the “excess” rate will
determine the number of jointly typical pairs. This lemma
extends the basic idea of excess rate to multiple codebooks,
multiple conditioning, and furthermore, a generalization is
made from a counting argument to the entropy of the index
of the codebook, which is essential for the subsequent secrecy
analysis.

Lemma 1: Consider random variables (Q, U0, V0, U1, V1,
Z) distributed according to pQ pU0,U1|Q pV0,V1|Q pZ |U0,U1,V0,V1 .
Draw random sequences Qn, Un

0 , V n
0 according to∏n

i=1 pQ(qi) pU0|Q(u0,i |qi ) pV0|Q(v0,i |qi). Conditioned
on Un

0 , draw 2nS i.i.d. copies of Un
1 according to∏n

i=1 pU1|U0(u1,i |u0,i ), denoted Un
1 (�), � ∈ [[1, 2nS]].

Similarly, conditioned on V n
0 , draw 2nT i.i.d. copies

of V n
1 according to

∏n
i=1 pV1|V0(v1,i |v0,i ), denoted
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Fig. 2. Structure of Lemma 1: subject to jointly typical sequences
(Qn , Un

0 , V n
0 , Un

1 (K ), V n
1 (L), Zn), finding a bound on the conditional

entropy of (K , L), thus implicitly bounding the number of sequence pairs
that can be jointly typical with (Qn , Zn) from codebooks with certain size.

V n
1 (k), k ∈ [[1, 2nT ]]. Let L ∈ [[1, 2nS]] and K ∈ [[1, 2nT ]] be

random variables with arbitrary PMF. If

S > I(U1; Z |Q, U0, V0)+ δ1(ε)

T > I(V1; Z |Q, U0, V0)+ δ1(ε)

S + T > I(U1, V1; Z |Q, U0, V0)+ δ1(ε)

for a positive δ1(ε) and if for an arbitrary sequence Zn,

P
(
(Qn, Un

0 , V n
0 , Un

1 (L), V n
1 (K ), Zn) ∈ T (n)

ε

) −−→
n→∞ 1, (3)

there exists a positive δ2(ε) −−→
ε→0

0, such that for n sufficiently

large,

H(L, K |Qn, Un
0 , V n

0 , Zn, C)

≤ n(S + T − I(U1, V1; Z |Q, U0, V0))+ nδ2(ε), (4)

where C = {Un
1 (1), . . . , Un

1 (2nS), V n
1 (1), . . . , V n

1 (2nT )}.
The proof is provided in Appendix A. This result is related

to, and contains, [10, Lemma 1]. In particular, [10] considers a
single-input channel and explores the properties of codebooks
driven by this input, while observing an output Z . In contrast,
this paper’s Lemma 1 develops a corresponding result for
a multiple-access channel with respect to Z , motivated by
the two-transmitters present in the model of this paper. This
accounts for the new features of our Lemma 1, namely
three rate constraints instead of one, as well as monitor-
ing the entropy of two index random variables instead of
one. Furthermore, the present result has one additional layer
of conditioning to allow for indirect decoding of multiple
confidential messages in the sequel, while in [10] only one
confidential message is decoded.

Remark 1: In addition to establishing the main results
of this paper, Lemma 1 also has broader implications on
the necessity of prefixing in multi-transmitter secrecy prob-
lems [32] and deriving the minimum amount of randomness
needed to achieve secrecy. Csiszár and Körner introduced
prefixing in [33] to expand the achievable rate region of the

non-degraded broadcast channel with confidential messages,
a technique that was subsequently used in essentially the same
manner in multi-transmitter settings. Subsequently, Chia and
El Gamal showed that in a single-transmitter wiretap channel,
prefixing can be replaced with superposition coding [10].
Appendix B extends this concept to a multi-transmitter setting
and presents an achievability technique for the multiple access
wiretap channel that utilizes minimal randomness and matches
the best known achievable rates without prefixing.

Theorem 1: An inner bound on the secrecy capacity region
of the two-transmitter two-receiver channel with confidential
messages is given by the set of non-negative rate pairs
(R1, R2) such that

R1 < I(U0, U1; Y1|Q, V0, V1)− I(U0; Z |Q)

−I(U1; Z |U0, V0)

R1 < I(U0, U2; Y2|Q, V0, V2)− I(U0; Z |Q)

−I(U2; Z |U0, V0)

R1 < I(U0, U1, V1; Y1|Q, V0)− I(U0; Z |Q)

−I(U1, V1; Z |U0, V0)

R1 < I(U0, U2, V2; Y2|Q, V0)− I(U0; Z |Q)

−I(U2, V2; Z |U0, V0)

R2 < I(V0, V1; Y1|Q, U0, U1)− I(V0; Z |Q)

−I(V1; Z |U0, V0)

R2 < I(V0, V2; Y2|Q, U0, U2)− I(V0; Z |Q)

−I(V2; Z |U0, V0)

R2 < I(U1, V0, V1; Y1|Q, U0)− I(V0; Z |Q)

−I(U1, V1; Z |U0, V0)

R2 < I(U2, V0, V2; Y2|Q, U0)− I(V0; Z |Q)

−I(U2, V2; Z |U0, V0)

R1+R2 < I(U0, U1, V0, V1; Y1|Q)− I(U0, U1, V0, V1; Z |Q)

R1+R2 < I(U0, U2, V0, V2; Y2|Q)− I(U0, U2, V0, V2; Z |Q)

R1+R2 < I(U0, U1; Y1|Q, V0, V1)+I(U1, V0, V1; Y1|Q, U0)

−I(U0, U1, V0, V1; Z |Q)− I(U1; Z |U0, V0)

R1+R2 < I(U0, U1; Y1|Q, V0, V1)+I(V0, V2; Y2|Q, U0, U2)

−I(U0, V0; Z |Q)− I(U1; Z |U0, V0)

−I(V2; Z |U0, V0)

R1+R2 < I(U0, U1; Y1|Q, V0, V1)+I(U2, V0, V2; Y2|Q, U0)

−I(U1; Z |U0, V0)− I(U0, U2, V0, V2; Z |Q)

R1+R2 < I(V0, V1; Y1|Q, U0, U1)+I(U0, U1, V1; Y1|Q, V0)

−I(U0, U1, V0, V1; Z |Q)− I(V1; Z |U0, V0)

R1+R2 < I(V0, V1; Y1|Q, U0, U1)+I(U0, U2; Y2|Q, V0, V2)

−I(U0, V0; Z |Q)− I(V1; Z |U0, V0)

−I(U2; Z |U0, V0)

R1+R2 < I(V0, V1; Y1|Q, U0, U1)+I(U0, U2, V2; Y2|Q, V0)

−I(V1; Z |U0, V0)− I(U0, U2, V0, V2; Z |Q)

R1+R2 < I(U0, U2; Y2|Q, V0, V2)+I(U1, V0, V1; Y1|Q, U0)

−I(U0, U1, V0, V1; Z |Q)− I(U2; Z |U0, V0)

R1+R2 < I(U0, U2; Y2|Q, V0, V2)+I(U2, V0, V2; Y2|Q, U0)

−I(U0, U2, V0, V2; Z |Q)− I(U2; Z |U0, V0)
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R1+R2 < I(V0, V2; Y2|Q, U0, U2)+I(U0, U2, V2; Y2|Q, V0)

−I(U0, U2, V0, V2; Z |Q)− I(V2; Z |U0, V0)

R1+R2 < I(V0, V2; Y2|Q, U0, U2)+I(U0, U1, V1; Y1|Q, V0)

−I(U0, U1, V0, V1; Z |Q)− I(V2; Z |U0, V0)

R1+R2 < I(U0, U1, V1; Y1|Q, V0)+I(U1, V0, V1; Y1|Q, U0)

−I(U0, V0; Z |Q)− 2I(U1, V1; Z |U0, V0)

R1+R2 < I(U0, U1, V1; Y1|Q, V0)+I(U2, V0, V2; Y2|Q, U0)

−I(U0, V0; Z |Q)− I(U1, V1; Z |U0, V0)

−I(U2, V2; Z |U0, V0)

R1+R2 < I(U1, V0, V1; Y1|Q, U0)+I(U0, U2, V2; Y2|Q, V0)

−I(U0, U1, V0, V1; Z |Q)− I(U2, V2; Z |U0, V0)

R1+R2 < I(U0, U2, V2; Y2|Q, V0)+I(U2, V0, V2; Y2|Q, U0)

−I(U0, V0; Z |Q)− 2I(U2, V2; Z |U0, V0)

for some

p(q)p(u0|q)p(u1, u2|u0)p(v0|q)p(v1, v2|v0)

p(x1|u0, u1, u2)p(x2|v0, v1, v2)p(y1, y2, z|x1, x2), (5)

such that

I(U1, U2, V1, V2; Z |U0, V0) ≤ I(U1, V1; Z |U0, V0)

+I(U2, V2; Z |U0, V0)− I(U1;U2|U0)− I(V1; V2|V0). (6)

The proof uses superposition coding, Wyner’s wiretap cod-
ing, Marton coding, as well as indirect decoding. The details
of the proof are provided in Appendix C. Our coding strategy
extends the approach developed in [11] for the broadcast
channel with confidential messages to the scenario at hand
with two transmitters. For the first transmitter, the message
w1 is encoded into a sequence un

0. To deal with multicasting,
we superimpose a Marton codebook to un

0 consisting of
sequences un

1 and un
2; formally, given un

0, a jointly typical
pair (un

1, un
2) is selected at random from the Marton codebook.

For the second transmitter, the codebook structure is identical
and the codewords generated are represented by vn

0 , vn
1 , and

vn
2 , respectively. The receiver j ∈ {1, 2} decodes w1 through

(un
0, un

j ), and decodes w2 through (vn
0 , vn

j ). As discovered
in [11], note that correctly decoding (w1, w2) at the receiver
j does not require correctly decoding (un

j , v
n
j ). Here, a two-

step secrecy analysis is necessary because the (un
[1:2], v

n
[1:2])

sequences should not leak any information about (un
0, vn

0 ).
Therefore, the secrecy constraints for un

0 and vn
0 sequences

should be derived first, and then secrecy constraints for
(un[1:2], vn[1:2]) sequences should be derived, assuming that the
eavesdropper has access to (un

0, v
n
0 , zn). This two-step secrecy

can be seen in Theorem 1; for example in the first constraint
on R1 the first negative term stands for the security of un

0
and the second negative term stands for the security of un

1
assuming that eavesdropper has access to (un

0, v
n
0 , zn).

This result covers several known earlier results:
• By setting Z = ∅, U0 = U1 = U2 = X1, and V0 = V1 =

V2 = X2, the result in Theorem 1 reduces to the capacity
region of compound multiple access channel discussed
in [7].

• By setting Y2 = ∅ (or Y1 = ∅), U0 = U1 = U2 = X1 and
V0 = V1 = V2 = X2, the result in Theorem 1 reduces

to the achievable rate region of multiple access wiretap
channel without common message [21]–[23].

• By setting X2 = ∅ (or X1 = ∅), U0 = U1 = U2, and
Y2 = ∅ (or Y1 = ∅), the result in Theorem 1 reduces to
the capacity region of broadcast channel with confidential
message [33, Corollary 2].

• By setting X2 = ∅ (or X1 = ∅), the result in
Theorem 1 reduces to the achievable rate region for
two-receiver, one-eavesdropper wiretap channel presented
in [10, Theorem 1].

Remark 2: By doing some algebraic manipulation we can
show that the constraint in (6) holds only if

I(U1, V1;U2, V2|U0, V0, Z) = 0. (7)

Intuitively speaking, (7) shows that the Marton coding code-
books remain independent even if the eavesdropper has access
to the the cloud centers.

Corollary 1: An inner bound on the secrecy capacity region
of degraded two-transmitter two-receiver channel with confi-
dential messages (Definition 4) is given by the set of non-
negative rate pairs (R1, R2) such that

R1 ≤ I(U0; Y2|V0, Q)− I(U0; Z |Q) (8)

R2 ≤ I(V0; Y2|U0, Q)− I(V0; Z |Q) (9)

R1 + R2 ≤ I(U0, V0; Y2|Q)− I(U0, V0; Z |Q) (10)

for some

p(q)p(u0|q)p(v0|q)p(x1|u0)p(x2|v0). (11)

Proof: The proof follows from Theorem 1 by setting U0 =
U1 = U2 and V0 = V1 = V2 and considering the fact that the
channel is degraded. �

IV. AN OUTER BOUND FOR THE DEGRADED MODEL

We develop an outer bound for the degraded version of the
model and provide an example in which it meets the inner
bound of Theorem 1.

Definition 4: The degraded two-transmitter two-receiver
channel with confidential messages obeys:

p(y1, y2, z|x1, x2) = p(y1|x1, x2)p(y2|y1)p(z|y2). (12)

Theorem 2: The secrecy capacity region for the degraded
two-transmitter two-receiver channel with confidential mes-
sages is included in the set of rate pairs (R1, R2) satisfying

R1 ≤ I(U0; Y2|Q)− I(U0; Z |Q), (13)

R2 ≤ I(V0; Y2|Q)− I(V0; Z |Q), (14)

R1 + R2 ≤ I(U0, V0; Y2|Q)− I(U0, V0; Z |Q), (15)

for some joint distribution

p(q)p(u0, v0|q)p(x1|u0)p(x2|v0). (16)

The details of the proof are provided in Appendix D.
Example (Degraded Switch Model): We consider an exam-

ple of the two-transmitter two-receiver channel where the first
legitimate receiver has access to the noisy version of each of
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Fig. 3. Degraded switch model.

the two transmitted values in a time-sharing (switched) man-
ner, without interference from the other transmitter (Fig. 3).
The second legitimate receiver has access to a noisy version
of the first receiver, and the eavesdropper has access to a
noisy version of the second receiver. This example illustrates
a common situation in cellular networks, in which a user is
in the coverage range of two different base stations. The user
can only receive signal from a single station in each time
slot while an eavesdropper has access to noisy versions of the
receiver signals. The switch channel state information is made
available to all terminals. In this model the channel outputs
are as follows:

y ′1 = (y1, s), (17)

y ′2 = (y2, s), (18)

z′ = (z, s). (19)

This model consists of a channel with states that are causally
available at both the encoders and decoders.

The statistics of the channel, conditioned on the switch state,
are expressed as follows:

p(y ′1, y ′2, z|x1, , x2, s)

= p(y1|x1, x2, s) p(y2|y1, s) p(z|y2, s). (20)

The switch model describes, e.g., frequency hopping over
two frequencies [29]. The state (switch) is a binary random
variable that chooses between listening to the Transmitter 1,
with probability τ , and listening to the Transmitter 2, with
probability 1− τ , independently at each time slot. We further
assume the state is i.i.d. across time,

p(y1|x1, x2, s) = p(y1|x1)1{s=1} + p(y1|x2)1{s=2},
= p(y1|xs), (21)

where 1{·} is the indicator function. Therefore, the channel
model for degraded switch model is as follows

p(y1, y2, z|x, x, s) = p(y1|xs)p(y2|y1, s)p(z|y2, s). (22)

Theorem 3: The secrecy capacity region for the degraded
switch two-transmitter two-receiver channel with confidential
messages, is given by the set of rate pairs (R1, R2) satisfying

R1 ≤ I(U0; Y ′2|V0, Q) − I(U0; Z ′|Q), (23)

R2 ≤ I(V0; Y ′2|U0, Q) − I(V0; Z ′|Q), (24)

R1 + R2 ≤ I(U0, V0; Y ′2|Q)− I(U0, V0; Z ′|Q), (25)

for some joint distribution

p(q)p(u0|q)p(v0|q)p(x1|u0)p(x2|v0). (26)

To prove Theorem 3, we show that given Q, U0 and V0
are independent for this example. The details of the proof are
provided in Appendix E.

V. A GENERAL OUTER BOUND

We now develop a general outer bound for the model of
Fig. 1 and provide an example in which it meets the inner
bound of Theorem 1.

Theorem 4: The secrecy capacity region for the two-
transmitter two-receiver channel with confidential messages
is included in the set of rate pairs (R1, R2) satisfying

R1 ≤ I(U0; Y1, Y2|Q)− I(U0; Z |Q), (27)

R2 ≤ I(V0; Y1, Y2|Q)− I(V0; Z |Q), (28)

R1 + R2 ≤ I(U0, V0; Y1, Y2|Q)− I(U0, V0; Z |Q), (29)

for some joint distribution

p(q)p(u0, v0|q)p(x1|u0)p(x2|v0). (30)

The details of the proof are provided in Appendix F.
Example (Noiseless Switch Model): This example is moti-

vated by two transmitters operating on different spectral bands,
while the receiving terminals may receive adaptively on one
band at a time [29]. The eavesdropper in our example has
access to one noiseless interference-free transmitted value at a
time. Here, it is assumed that both legitimate receivers operate
according to a common random switch s1 that is connected to
Transmitter 1 with probability τ1 and to Transmitter 2 with
probability 1 − τ1, and the eavesdropper operates according
to another random switch s2 that is connected to Transmit-
ter 1 with probability τ2 and to Transmitter 2 with probability
1−τ2. Aside from the switches, the channel is noiseless. Both
receivers and the eavesdropper have access to their own switch
state information. Therefore the channel outputs are considered

y ′1 = (y1, s1), (31)

y ′2 = (y2, s1), (32)

z′ = (z, s2). (33)

Since y1 = y2, we also have y ′1 = y ′2.
Theorem 5: The secrecy capacity region for the noiseless

switch two-transmitter two-receiver channel with confidential
messages is given by the set of rate pairs (R1, R2) satisfying

R1 ≤ (τ1 − τ2)
+

H(X1), (34)

R2 ≤ (τ2 − τ1)
+

H(X2), (35)

where (x)+ = max{0, x}.
The details of the proof are provided in Appendix G. The

capacity region in Theorem 5 shows that transmitters can
securely communicate to receivers as long as τ1 �= τ2.

VI. ACHIEVABLE RATE REGION UNDER

THE STRONG SECRECY

Theorem 6: An inner bound on the secrecy capacity region
of the two-transmitter two-receiver channel with confidential
messages consists of the union of rate pairs (R1, R2) regions
satisfying (156)–(167), (173)–(175), (177), and (178), for
some distribution

p(q)p(u0, u1, u2|q)p(v0, v1, v2|q)

× p(x1|u0, u1, u2)p(x2|v0, v1, v2)p(y1, y2, z|x1, x2). (36)

The proof is given in Appendix H.
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Remark 3: It is customary to eliminate rate variables not
associated with external messages via Fourier-Motzkin elimi-
nation [34]. In the interest of brevity, in this paper we omit the
73 inequalities resulting from Fourier-Motzkin elimination and
instead make them available via [35]. In the sequel, a subset
of this achievable rate region will be presented that enjoys a
much simpler expression.

Remark 4: Even though the analysis of Theorem 1 is based
on typical counting and OSRB is based on distribution approx-
imation here we show that the region in Theorem 6 is a
superset of the region in Theorem 1. If we assume that (6), and
therefore (7), holds, the inequalities (161) for j = 2, (162) for
j = 1, and (163)–(167) will be redundant and by applying the
Fourier-Motzkin procedure [36], [37] to (156)–(160), (161)
for j = 1, (162) for j = 2, (173), (174), and (178) the region
in Theorem 1 over the distribution (36) will be achieved. This
shows that the region derived by OSRB is a superset of the
region derived in the weak secrecy regime.

VII. CONCLUSION

This paper studies the multi-transmitter multicast problem in
presence of an eavesdropper, wherein weak and strong secrecy
regimes are studied. For the weak secrecy regime, the method
of Chia and El Gamal is extended to two transmitters. We show
that the achievable region calculated for the weak secrecy
regime in this channel configuration is no bigger than the one
calculated under strong secrecy. Two examples are presented
in which the inner and outer bounds on secrecy region meet.
In the process, we also characterize the minimum amount
of randomness necessary to achieve secrecy in the multiple-
access wiretap channel.

APPENDIX A
PROOF OF LEMMA 1

Let N(Qn , Un
0 , V n

0 , Zn) = |{(k, �) ∈ [[1, 2nS]] × [[1, 2nT ]] :
(Qn, Un

0 , V n
0 , Un

1 (k), V n
1 (�), Zn) ∈ T (n)

ε }|. Next, let’s define
the following error events.

Let E1(Qn, Un
0 , V n

0 , Zn) = 1 if N(Qn , Un
0 , V n

0 , Zn) ≥ (1+
δ1(ε))2n(S+T−I(U1,V1;Z |Q,U0,V0)+δ(ε)) and E1 = 0 otherwise.

Let E = 0 if (Qn, Un
0 , V n

0 , Un
1 (K ), V n

1 (L), Zn) ∈ T (n)
ε and

E1(Qn, Un
0 , V n

0 , Zn, K , L) = 0, and E = 1 otherwise.
We now show that if S ≥ I(U1; Z |Q, U0, V0) +

δ(ε), T ≥ I(V1; Z |Q, U0, V0) + δ(ε), and S + T ≥
I(U1, V1; Z |Q, U0, V0) + δ(ε), then P(E = 1) → 0 as
n→∞.

By the union bound we have

P(E = 1) ≤ P
(
(Qn, Un

0 , V n
0 , Un

1 (K ), V n
1 (L), Zn) /∈ T (n)

ε

)
+P

(
E1(Qn, Un

0 , V n
0 , Zn, K , L) = 1

)
. (37)

The first term tends to zero by the main assumption of the
Lemma.

We then partition the event {E1 = 1} based on the
composition of the typical sequences (Qn, Un

0 , V n
0 , Un

1 (k),

V n
1 (�), Zn) ∈ T (n)

ε :
• When all such typical sequences share the same Un

1 (k),
i.e., correspond to a single k.

• When all such typical sequences share the same V n
1 (�),

i.e., correspond to a single �.
• Neither of the above

As usual, each of the three partitioned E1 events gives rise to
one rate constraint. We discuss the first in detail; the remaining
two follow similarly. Define A(Qn, Un

0 , V n
0 , zn) as the event

{E1(Qn, Un
0 , V n

0 , Zn) = 1} ∩ {Zn = zn},

P
(
E1(Qn, Un

0 , V n
0 , Zn) = 1

)
=

∑
(qn,un

0,vn
0 )∈T (n)

ε

[
p(qn)p(un

0|qn)p(vn
0 |qn)

×P

(
(E1(Qn, Un

0 , V n
0 , Zn) = 1)

|Qn = qn, Un
0 = un

0, V n
0 = vn

0

)]
=

∑
(qn,un

0,vn
0 )∈T (n)

ε (Q,U0,V0)

zn∈T (n)
ε (Z |Q,U0,V0)

p(qn)p(un
0|qn)p(vn

0 |qn)

×P
(
A(qn, un

0, vn
0 , zn)|Qn = qn, Un

0 = un
0, V n

0 = vn
0

)
≤

∑
(qn,un

0,vn
0 )∈T (n)

ε (Q,U0,V0)

p(qn)p(un
0|qn)p(vn

0 |qn)

∑
zn∈T (n)

ε (Z |Q,U0,V0)

P
(
(E1(q

n, un
0, vn

0 , zn) = 1)

|Qn = qn, Un
0 = un

0, V n
0 = vn

0

)
. (38)

Then,

P
(
E1(q

n, un
0, vn

0 , zn) = 1|Qn = qn, Un
0 = un

0, V n
0 = vn

0

)
= P

(
N(qn , un

0, vn
0 , zn) ≥ (1+δ1(ε))2n(T−I(V1;Z |Q,U0,V0)+δ(ε))).

Define X� = 1 if (qn, un
0, vn

0 , V n
1 (�), zn) ∈ T (n)

ε and 0
otherwise. Here, X�, � ∈ [[1, 2nT ]], are i.i.d. Bernoulli-α
random variables, where

2−n(I(V1;Z |Q,U0,V0)+δ(ε)) ≤ α ≤ 2−n(I(V1;Z |Q,U0,V0)−δ(ε)).

Then

P

(
N(qn , un

0, vn
0 , zn) ≥ (1+ δ1(ε))2n(T−I(V1;Z |Q,U0,V0)+δ(ε))

∣∣∣Qn = qn, Un
0 = un

0, V n
0 = vn

0

)

≤ P

(2nT∑
�=1

X� ≥ (1+δ1(ε))2nT α
∣∣∣Qn=qn, Un

0 =un
0, V n

0 =vn
0

)
.

Applying the Chernoff Bound (e.g., see [34, Appendix B]),
leads to

P

(2nT∑
�=1

X� ≥ (1+ δ1(ε))2nT α
∣∣∣Qn = qn, Un

0 = un
0, V n

0 = vn
0

)

≤ exp(−2nT αδ2
1(ε)/4)

≤ exp(−2n(T−I(V1;Z |Q,U0,V0)−δ(ε))δ2
1(ε)/4). (39)
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Therefore,

P(E1(Qn, Un
0 , V n

0 , Zn) = 1)

≤
∑

(qn,un
0,vn

0 )∈T (n)
ε

p(qn)p(un
0|qn)p(vn

0 |qn)

×
∑

zn∈T (n)
ε (Z |Q,U0,V0)

exp(−2n(T−I(V1;Z |Q,U0,V0)−δ(ε))δ2
1(ε)/4)

≤ 2n log |Z| exp(−2n(T−I(V1;Z |Q,U0,V0)−δ(ε))δ2
1(ε)/4), (40)

which tends to zero as n →∞ if T ≥ I(V1; Z |Q, U0, V0)+
δ(ε).

In a similar manner, the bounding of error probability for
the second and third partition of E1 (please see above) will
give rise to the rate constraints S ≥ I(U1; Z |Q, U0, V0) +
δ(ε), and S+T ≥ I(U1, V1; Z |Q, U0, V0)+δ(ε), respectively.
Details are ommited for brevity.

Finally, we bound H(L, K |Qn, Un
0 , V n

0 , Zn, C) as follows:

H(L, K , E |Qn , Un
0 , V n

0 , Zn, C)

≤ 1+ P(E = 1)H(L, K |E = 1, Qn, Un
0 , V n

0 , Zn, C)

+P(E = 0)H(L, K |E = 0, Qn, Un
0 , V n

0 , Zn, C)

≤ 1+ P(E = 1)n(S + T )

+ log
(
(1+ δ1(ε))2n(S+T−I(U1,V1;Z |Q,U0,V0)+δ(ε))

)
≤ n(S + T − I(U1, V1; Z |Q, U0, V0)+ δ2(ε)). (41)

APPENDIX B
ACHIEVABLE RATE REGION FOR MAC-WTC UNDER

RANDOMNESS CONSTRAINT

It is well-known that a stochastic encoding is required to
avoid leaking information about the transmitted confidential
messages to an eavesdropper. Here, a new achievability tech-
nique for characterizing the trade-off between the rate of the
random number to realize the stochastic encoding and the
communication rates in the multiple access wiretap channel,
by employing a variation of superposition coding, is presented.

Consider a MAC-WTC (X1,X2, p(y, z|x1, x2),Y,Z),
in which X1, X2 are finite input alphabets and Y and Z
are finite output alphabets at the legitimate receiver and the
eavesdropper, respectively (as depicted in Fig. 4). In this
problem, each transmitter sends a confidential message which
is supposed to be decoded by the legitimate receiver and
must be kept secret from the eavesdropper. Furthermore, for
stochastic encoding, Encoder 1 and Encoder 2 are allowed to
use a limited amount of randomness. Thus, we are interested
in the trade-off between the rate of randomness, and the rates
of confidential messages.

Definition 5: A (M1,n, M2,n , n) code for the considered
model (Fig. 4) consists of the following:

i) Two message sets Wi = [[1, Mi,n ]], i = 1, 2, from which
independent messages W1 and W2 are drawn uniformly
distributed over their respective sets. Also, two dummy
message sets Ai = [[1, M ′i,n ]], i = 1, 2, from which
independent dummy messages A1 and A2 are drawn
uniformly distributed over their respective sets.

ii) Deterministic encoders fi,n , i = 1, 2, are defined by the
function fi,n :Wi ×Ai → X n

i .

Fig. 4. Multiple access wiretap channel with deterministic encoders.

iii) A decoding function φ : Yn → W1 × W2 that
assigns (ŵ1, ŵ2) ∈ [[1, M1,n]]× [[1, M2,n]] to the received
sequence yn.

The probability of error is given by:

Pe � P
({(Ŵ1, Ŵ2) �= (w1, w2)}

)
. (42)

Definition 6 [31]: A quadruple (R1, Rd1, R2, Rd2)
is achievable under the weak secrecy if there exists
a sequence of (M1,n , M2,n, M ′1,n , M ′2,n, n) codes with
M1,n ≥ 2nR1 , M2,n ≥ 2nR2 , M ′1,n ≤ 2nRd1 , M ′2,n ≤ 2nRd2 ,
so that Pe −−→

n→∞ 0 and

1

n
I(W1, W2; Zn) −−→

n→∞ 0. (43)

Theorem 7: An inner bound on the secrecy capacity region
of the multiple access wiretap channel is given by the set of
non-negative quadruples (R1, Rd1 , R2, Rd2) such that

R1 ≤ I(U ; Y |Q, V )− I(U ; Z |Q), (44)

R2 ≤ I(V ; Y |Q, U)− I(V ; Z |Q), (45)

R1 + R2 ≤ I(U, V ; Y |Q)− I(U, V ; Z |Q), (46)

Rd1 ≥ I(U ; Z |Q)+ I(X1; Z |Q, U, V ), (47)

Rd2 ≥ I(V ; Z |Q)+ I(X2; Z |Q, U, V ), (48)

Rd1 + Rd2 ≥ I(X1, X2; Z |Q), (49)

for some

p(q)p(u|q)p(v|q)p(x1|u)p(x2|v)p(y, z|x1, x2). (50)

Remark 5: By setting U = X1, V = X2, and by taking
sufficiently large Rd1 and Rd2 , the result in Theorem 7 reduces
to the achievable rate region of multiple access wiretap
channel without common message [21]–[23].

Remark 6: By setting X2 = ∅ and V = ∅ (or X1 = ∅ and
U = ∅), the result in Theorem 7 reduces to the capacity rate
region of broadcast channel with confidential messages under
randomness constraint in [15, Corollary 11].

Proof: Rate Splitting: Divide the dummy message A1
into independent dummy messages A1,1 ∈ [[1, 2nR1,1]] and
A1,2 ∈ [[1, 2nR1,2 ]]. Also, divide the dummy message A2
into independent dummy messages A2,1 ∈ [[1, 2nR2,1]] and
A2,2 ∈ [[1, 2nR2,2 ]]. Therefore, Rd1 = R1,1 + R1,2 and Rd2 =
R2,1 + R2,2.

Codebook Generation: Fix p(q), p(u|q), p(v|q), p(x1|u),
p(x2|v), and ε > 0. Randomly and independently generate a
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typical sequence qn according to p(qn) =
n∏

i=1
p(qi ). We sup-

pose that all the terminals know qn .

i) Generate 2n(R1+R1,1) sequences according to∏n
i=1 pU |Q(ui |qi). Then, randomly bin these 2n(R1+R1,1)

sequences into 2nR1 bins. We index these sequences
as un(w1, a1,1). For each (w1, a1,1), generate 2nR1,2

codewords xn
1 (w1, a1,1, a1,2) each according to∏n

i=1 pX1|U (x1,i |ui ).
ii) Generate 2n(R2+R2,1) sequences according to∏n

i=1 pV |Q(vi |qi ). Then, randomly bin these 2n(R2+R2,1)

sequences into 2nR2 bins. We index these sequences
as vn(w2, a2,1). For each (w2, a2,1), generate 2nR2,2

codewords xn
1 (w2, a2,1, a2,2) each according to∏n

i=1 pX2|V (x2,i |vi ).

Encoding: To send the message w1, the Encoder 1 splits
a1 into (a1,1, a1,2), and chooses un(w1, a1,1). Then it chooses
codeword xn

1 (w1, a1,1, a1,2) and send it over the channel.
To send the message w2, the Encoder 2 splits a2 into

(a2,1, a2,2), and chooses vn(w2, a2,1). Then it chooses code-
word xn

2 (w2, a2,1, a2,2) and send it over the channel.
Decoding and Error Probability Analysis:

• Decoder decodes (w1, w2) by finding a unique pair
(w1, w2) such that (qn, un(w1, a1,1), v

n(w2, a2,1), yn) ∈
T (n)

ε (pU,V ,Y ) for some (a1,1, a2,1). The probability of
error for Receiver goes to zero as n → ∞ if we
choose [34]

R1 + R1,1 ≤ I(U ; Y |Q, V )− ε, (51)

R2 + R2,1 ≤ I(V ; Y |Q, U)− ε, (52)

R1 + R1,1 + R2 + R2,1 ≤ I(U, V ; Y |Q)− ε. (53)

Equivocation Calculation: We analyze mutual informa-
tion between (W1, W2) and Zn , averaged over all random
codebooks

I(W1, W2; Zn|Qn, C)

= I(W1, W2, A1,1, A1,2, A2,1, A2,2; Zn|Qn, C)

− I(A1,1, A1,2, A2,1, A2,2; Zn|W1, W2, Qn, C)
(a)= I(W1, W2, A1,1, A1,2, A2,1, A2,2, Xn

1 , Xn
2 ; Zn|Qn, C)

−I(A1,1, A1,2, A2,1, A2,2; Zn|W1, W2, Qn , C)
(b)= I(Xn

1 , Xn
2 ; Zn|Qn, C)

−I(A1,1, A1,2, A2,1, A2,2; Zn|W1, W2, Qn , C)

= I(Xn
1 , Xn

2 ; Zn|Qn, C)− I(A1,1, A2,1; Zn|W1, W2, Qn, C)

−I(A1,2, A2,2; Zn|W1, W2, A1,1, A1,2, Qn , C)

= I(Xn
1 , Xn

2 ; Zn|Qn, C)−H(A1,1, A2,1|W1, W2, Qn, C)

+H(A1,1, A2,1|W1, W2, Zn, Qn , C)

−H(A1,2, A2,2|W1, W2, A1,1, A2,1, Qn, C)

+H(A1,2, A2,2|W1, W2, A1,1, A2,1, Zn, Qn, C), (54)

where (a) follows since Xn
1 and Xn

2 are deterministic functions
of (W1, A1,1, A1,2) and (W2, A2,1, A2,2), respectively. Also,
(b) follows from the fact that, given Xn

1 and Xn
2 , the indices

W1, W2, A1,1, A1,2,A2,1, and A2,2 are uniquely determined.

The first term in (54) is bounded as:

I(Xn
1 , Xn

2 ; Zn|Qn, C) ≤ nI(X1, X2; Z |Q)+ nε, (55)

where ε −−→
n→∞ 0 similar to [34].

For the second term in (54) we have

H(A1,1, A2,1|W1, W2, Qn , C) = n(R1,1 + R2,1). (56)

For the third term, substituting U0 ← Q, V0 ← Q,
U1 ← U , and V1 ← V in Lemma 1 result that if
P
(
(Qn, Un(W1, A1,1), V n(W2, A2,1), Zn) ∈ T (n)

ε

) −−→
n→∞ 1 and

R1,1 > I(U ; Z |Q)+ ε, (57)

R2,1 > I(V ; Z |Q)+ ε, (58)

R1,1 + R2,1 > I(U, V ; Z |Q)+ ε. (59)

Then,

H(A1,1, A2,1|W1, W2, Zn, Qn, C)

≤ n(R1,1 + R2,1 − I(U, V ; Z |Q)+ ε). (60)

Here, this condition holds because

P
(
(Qn, Un(W1, A1,1), Xn

1 (W1, A1,1, A1,2),

V n(W2, A2,1), Xn
2 (W2, A2,1, A2,2), Zn) ∈ T (n)

ε

) −−→
n→∞ 1.

(61)

To bound the fourth term in (54), we have

H(A1,2, A2,2|W1, W2, A1,1, A2,1, Qn, C) = n(R1,2 + R2,2).

(62)

Now, we bound the last term in (54) by applying Lemma 1,

H(A1,2, A2,2|W1, W2, A1,1, A2,1, Zn, Qn, C)

≤ n(R1,2 + R2,2 − I(X1, X2; Z |Q, U, V )+ ε), (63)

if (61) holds and

R1,2 > I(X1; Z |Q, U, V )+ ε, (64)

R2,2 > I(X2; Z |Q, U, V )+ ε, (65)

R1,2 + R2,2 > I(X1, X2; Z |Q, U, V )+ ε. (66)

Substituting (55), (56), (60), (62), and (63) into (54) yields

I(W1, W2; Zn|Qn, C)

≤ nI(X1, X2; Z |Q)− n(R1,1 + R2,1)

+n(R1,1 + R2,1 − I(U, V ; Z |Q)+ ε)− n(R1,2 + R2,2)

+n(R1,2 + R2,2 − I(X1, X2; Z |Q, U, V )+ ε). (67)

Therefore I(W1, W2; Zn|Qn, C) ≤ 2nε. By applying the
Fourier-Motzkin procedure [36] to (51)–(53), (57)–(59),
(64)–(66), Rd1 = R1,1 + R1,2, and Rd2 = R2,1 + R2,2 we
obtain the region in Theorem 7. �
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APPENDIX C
PROOF OF THEOREM 1

The coding scheme is based on superposition coding,
Wyner’s random binning [38], Marton coding, and applying
indirect decoding [10].

The random code generation is as follows:
Fix p(q), p(u0|q), p(u1, u2|u0), p(v0|q), p(v1, v2|v0),

p(x1|u0, u1, u2), p(x2|v0, v1, v2), ε1 < min{ε′, ε′′}, and ε2 <
min{ε′, ε′′}.
Codebook Generation: Randomly and independently generate

a typical sequence qn according to p(qn) =
n∏

i=1
p(qi ). We sup-

pose that all the terminals know qn .

i) Generate 2nR̃1 codewords un
0(�0) each according to∏n

i=1 pU0|Q(u0,i |qi ). Then, randomly bin the 2nR̃1 code-
words into 2nR1 bins, B(w1), w1 ∈ [[1, 2nR1]]. For each
�0, generate 2nρ1 codewords un

1(�0, t1) each according
to

∏n
i=1 pU1|U0(u1,i |u0,i). Then, randomly bin the 2nρ1

codewords into 2nρ′1 bins, B(�0, �1), �1 ∈ [[1, 2nρ′1]].
Similarly, for each �0, generate 2nρ̃1 codewords un

2(�0, t2)
each according to

∏n
i=1 pU2|U0(u2,i |u0,i ). Then, randomly

bin the 2nρ̃1 codewords into 2nρ̃′1 bins, B(�0, �2), �2 ∈
[[1, 2nρ̃′1]].

ii) Similarly, generate 2nR̃2 codewords vn
0 (�′0) each according

to
∏n

i=1 pV0|Q(v0,i |qi ). Then, randomly bin the 2nR̃2

codewords into 2nR2 bins, B(w2), w2 ∈ [[1, 2nR2]]. For
each �′0, generate 2nρ2 codewords vn

1 (�′0, s1) each accord-
ing to

∏n
i=1 pV1|V0(v1,i |v0,i ). Then, randomly bin the

2nρ2 codewords into 2nρ′2 bins, B(�′0, �′1), �′1 ∈ [[1, 2nρ′2]].
Similarly, for each �′0, generate 2nρ̃2 codewords vn

2 (�′0, s2)
each according to

∏n
i=1 pV2|V0(v2,i |v0,i ). Then, randomly

bin the 2nρ̃2 codewords into 2nρ̃′2 bins, B(�′0, �′2), �′2 ∈
[[1, 2nρ̃′2]].

Encoding: To send the message w1, the encoder f1 first
uniformly chooses index L0 ∈ B(w1). Then, it uniformly
chooses a pair of indices (L1, L2) and selects a jointly typ-
ical sequence pair (un

1(L0, t1(L0, L1)), un
2(L0, t2(L0, L1))) ∈

T (n)
ε1 (U1, U2|U0) in the product bin. If the encoder f1 finds

more than one such pair, then it chooses one of them uniformly
at random. We have an error if there is no such pair, in which
the encoder f1 uniformly at random chooses t1 ∈ B(L0, L1),
t2 ∈ B(L0, L2). The error probability of the last event
approaches to zero as n →∞, if [39]

ρ′1 + ρ̃′1 ≤ ρ1 + ρ̃1 − I(U1;U2|U0)− ε1. (68)

Finally, the encoder f1 generates a sequence Xn
1 at ran-

dom according to
∏n

i=1 p(x1,i |u0,i , u1,i , u2,i ). Encoder 2 pro-
ceeds similarly to encode w2 and sends codeword Xn

2 . The
probability of not finding a jointly typical sequence pair
(vn

1 (L ′0, s1(L ′0, L ′1)), vn
2 (L ′0, s2(L ′0, L ′1))) ∈ T (n)

ε2 (V1, V2|V0)
in the product bin approaches to zero as n →∞, if [39]

ρ′2 + ρ̃′2 ≤ ρ2 + ρ̃2 − I(V1; V2|V0)− ε2. (69)

Decoding and Error Probability Analysis:
• Let (W1, L0, T1) and (W2, L ′0, S1) denote the transmitted

indices by the first and the second transmitter, respec-
tively, and let (Ŵ1, L̂0, T̂1) and (Ŵ2, L̂ ′0, Ŝ1) denote the

corresponding decoded messages by the first receiver,
respectively. Receiver 1 decodes (L0, L ′0) and therefore
(w1, w2) indirectly by finding a unique pair (�̂0, �̂

′
0)

such that (qn, un
0(�̂0), un

1(�̂0, t1), vn
0 (�̂′0), vn

1 (�̂′0, s1), yn
1 ) ∈

T (n)
ε′ (U0, U1, V0, V1, Y1) for some t1 ∈ [[1, 2nρ1 ]] and s1 ∈
[[1, 2nρ2 ]]. The probability of error for Receiver 1 goes to
zero as n →∞ if we choose [34]

R̃1 + ρ1 < I(U0, U1; Y1|Q, V0, V1), (70)

R̃2 + ρ2 < I(V0, V1; Y1|Q, U0, U1), (71)

R̃1 + ρ1 + ρ2 < I(U0, U1, V1; Y1|Q, V0), (72)

ρ1 + R̃2 + ρ2 < I(U1, V0, V1; Y1|Q, U0), (73)

R̃1 + ρ1 + R̃2 + ρ2 < I(U0, U1, V0, V1; Y1|Q). (74)

The details of error analysis is available in [35] and
omitted for brevity here.

• Similarly Receiver 2 decodes (L0, L ′0) and therefore
(w1, w2) indirectly by finding a unique pair (�̌0, �̌

′
0)

such that (qn, un
0(�̌0), un

2(�̌0, t2), vn
0 (�̌′0), vn

2 (�̌′0, s2), yn
2 ) ∈

T (n)
ε′′ (U0, U2, V0, V2, Y2) for some t2 ∈ [[1, 2nρ̃1]] and

s2 ∈ [[1, 2nρ̃2]]. The error analysis for the second receiver
is similar to the first receiver and for the interest of
brevity it is omitted here. Similar to Receiver 1 the The
probability of error for Receiver 2 goes to zero as n→∞
if we choose [34]

R̃1 + ρ̃1 < I(U0, U2; Y2|Q, V0, V2), (75)

R̃2 + ρ̃2 < I(V0, V2; Y2|Q, U0, U2), (76)

R̃1 + ρ̃1 + ρ̃2 < I(U0, U2, V2; Y2|Q, V0), (77)

ρ̃1 + R̃2 + ρ̃2 < I(U2, V0, V2; Y2|Q, U0), (78)

R̃1 + ρ̃1 + R̃2 + ρ̃2 < I(U0, U2, V0, V2; Y2|Q). (79)

Equivocation Calculation: We analyze mutual information
between (W1, W2) and Zn , averaged over all random code-
books

I(W1, W2; Zn|Qn, C)

= I(W1, W2, L0, T1, T2, L ′0, S1, S2; Zn|Qn, C)

−I(L0, T1, T2, L ′0, S1, S2; Zn|W1, W2, Qn, C)

≤ I(Un
0 , Un

1 , Un
2 , V n

0 , V n
1 , V n

2 ; Zn|Qn, C)

−I(L0, L ′0; Zn|W1, W2, Qn , C)

−I(T1, T2, S1, S2; Zn|L0, L ′0, Qn , C)

= I(Un
0 , Un

1 , Un
2 , V n

0 , V n
1 , V n

2 ; Zn|Qn, C)

−H(L0, L ′0|W1, W2, Qn, C)

+H(L0, L ′0|Zn, W1, W2, Qn , C)

−I(T1, T2, S1, S2; Zn|L0, L ′0, Qn , C), (80)

where the inequality is due to the data processing inequal-
ity. Here, T1, T2, S1, and S2 are deterministic functions of
(L0, L1), (L0, L2), (L ′0, L ′1), and (L ′0, L ′2), respectively.

The first term in (80) is bounded as:

I(Un
0 , Un

1 , Un
2 , V n

0 , V n
1 , V n

2 ; Zn|Qn, C)

≤ nI(U0, U1, U2, V0, V1, V2; Z |Q)+ nε, (81)

as n→∞ where ε → 0 [34].
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For the second term in (80) we have

H(L0, L ′0|W1, W2, Qn, C) = n(R̃1 − R1 + R̃2 − R2). (82)

For the third term, substituting U0 ← Q, V0 ← Q, U1 ← U0,
and V1← V0 in Lemma 1 result that,

H(L0, L ′0|Zn, W1, W2, Qn, C)

≤ n(R̃1 − R1 + R̃2 − R2 − I(U0, V0; Z |Q)+ ε), (83)

if P
(
(Qn, Un

0 (L0), V n
0 (L ′0), Zn) ∈ T (n)

ε

)→ 1 as n→∞ and

R̃1 − R1 > I(U0; Z |Q)+ ε, (84)

R̃2 − R2 > I(V0; Z |Q)+ ε, (85)

R̃1 − R1 + R̃2 − R2 > I(U0, V0; Z |Q)+ ε. (86)

Here, the first condition holds because

P
(
(Qn, Un

0 (L0), Un
1 (L0, t1(L0, L1)), Un

2 (L0, t2(L0, L1)),

V n
0 (L ′0), V n

1 (L ′0, s1(L ′0, L ′1)),
V n

2 (L ′0, s2(L ′0, L ′1)), Zn) ∈ T (n)
ε

)→ 1, (87)

as n →∞. Now, we bound the last term in (80)

I(T1, T2, S1, S2; Zn|L0, L ′0, Qn, C)

= H(T1, T2, S1, S2|L0, L ′0, Qn, C)

−H(T1, T2, S1, S2|Zn, L0, L ′0, Qn, C)
(a)= H(T1, T2, S1, S2, L1, L2, L ′1, L ′2|L0, L ′0, Qn , C)

−H(T1, T2, S1, S2|Zn, L0, L ′0, Qn, C)

≥ H(L1, L2, L ′1, L ′2|L0, L ′0, Qn, C)

−H(T1, S1|Zn, L0, L ′0, Qn, C)

−H(T2, S2|Zn, L0, L ′0, Qn, C)
(b)= H(L1, L2|L0, L ′0, Qn, C)+H(L ′1, L ′2|L0, L ′0, Qn, C)

−H(T1, S1|Zn, L0, L ′0, Qn, C)

−H(T2, S2|Zn, L0, L ′0, Qn, C), (88)

where (a) is due to given the codebook C and
(L0, L ′0), (L1, L2, L ′1, L ′2) is a deterministic function of
(T1(L0, L1), T2(L0, L2), S1(L ′0, L ′1), S2(L ′0, L ′2)), and (b)
holds due to the fact that given (L0, L ′0, Qn , C), (L1, L2) and
(L ′1, L ′2) are independent. Now,

H(L1, L2|L0, L ′0, Qn, C) = n(ρ′1 + ρ̃′1), (89)

H(L ′1, L ′2|L0, L ′0, Qn, C) = n(ρ′2 + ρ̃′2), (90)

H(T1, S1|Zn, L0, L ′0, Qn, C)
(a)≤ n(ρ1 + ρ2 − I(U1, V1; Z |Q, U0, V0)+ ε), (91)

H(T2, S2|Zn, L0, L ′0, Qn, C)
(b)≤ n(ρ̃1 + ρ̃2 − I(U2, V2; Z |Q, U0, V0)+ ε), (92)

where (a) is due to the following. Consider,

H(T1, S1|Zn, L0, L ′0, Qn, C)

= H(T1, S1|Un
0 (L0), V n

0 (L ′0), Zn, L0, L ′0, Qn , C)

≤ H(T1, S1|Un
0 (L0), V n

0 (L ′0), Zn, Qn, C).

Now we upper bound the term H(T1, S1|Un
0 (L0), V n

0 (L ′0),
Zn, Qn , C). From (87) we have P

(
(Qn, Un

0 (L0), Un
1 (L0,

t1(L0, L1)), V n
0 (L ′0), V n

1 (L ′0, s1(L ′0, L ′1)), Zn) ∈ T (n)
ε

) → 1
as n→∞. Applying Lemma 1 leads to,

H(T1, S1|Un
0 (L0), V n

0 (L ′0), Zn, Qn, C)

≤ n(ρ1 + ρ2 − I(U1, V1; Z |Q, U0, V0)+ ε), (93)

if

ρ1 > I(U1; Z |Q, U0, V0)+ ε, (94)

ρ2 > I(V1; Z |Q, U0, V0)+ ε, (95)

ρ1 + ρ2 > I(U1, V1; Z |Q, U0, V0)+ ε. (96)

By the same argument the inequality (b) holds, if the following
inequalities hold,

ρ̃1 > I(U2; Z |Q, U0, V0)+ ε,

ρ̃2 > I(V2; Z |Q, U0, V0)+ ε,

ρ̃1 + ρ̃2 > I(U2, V2; Z |Q, U0, V0)+ ε.

Substituting (89)–(92) into (88) leads to,

I(T1, T2, S1, S2; Zn|L0, L ′0, Qn , C)

≥ n(ρ′1 + ρ̃′1)+ n(ρ′2 + ρ̃′2)
−n(ρ1 + ρ2 − I(U1, V1; Z |Q, U0, V0)+ ε)

−n(ρ̃1 + ρ̃2 − I(U2, V2; Z |Q, U0, V0)+ ε). (97)

Substituting (81)–(83) and (97) into (80) yields

I(W1, W2; Zn|Qn, C)

≤ nI(U0, U1, U2, V0, V1, V2; Z |Q)− n(R̃1 − R1 + R̃2 − R2)

+n(R̃1 − R1 + R̃2 − R2 − I(U0, V0; Z |Q))

−n(ρ′1 + ρ̃′1)− n(ρ′2 + ρ̃′2)
+n(ρ1 + ρ2 − I(U1, V1; Z |Q, U0, V0)+ ε)

+n(ρ̃1 + ρ̃2 − I(U2, V2; Z |Q, U0, V0)+ ε). (98)

Therefore I(W1, W2; Zn|Qn, C) ≤ nε if

I(U1, U2, V1, V2; Z |U0, V0)

−ρ′1 − ρ̃′1 − ρ′2 − ρ̃′2 + ρ1 + ρ2 − I(U1, V1; Z |Q, U0, V0)

+ρ̃1 + ρ̃2 − I(U2, V2; Z |Q, U0, V0) ≤ ε. (99)

As a result, the rate constraints derived in equivocation analy-
sis are

R̃1 − R1 + R̃2 − R2 > I(U0, V0; Z |Q), (100)

R̃1 − R1 > I(U0; Z |Q), (101)

R̃2 − R2 > I(V0; Z |Q), (102)

ρ1 + ρ2 > I(U1, V1; Z |Q, U0, V0), (103)

ρ1 > I(U1; Z |Q, U0, V0), (104)

ρ2 > I(V1; Z |Q, U0, V0), (105)

ρ̃1 + ρ̃2 > I(U2, V2; Z |Q, U0, V0), (106)

ρ̃1 > I(U2; Z |Q, U0, V0), (107)

ρ̃2 > I(V2; Z |Q, U0, V0), (108)

ρ1 + ρ2 + ρ̃1 + ρ̃2 − ρ′1 − ρ̃′1 − ρ′2 − ρ̃′2
≤ I(U1, V1; Z |Q, U0, V0)+ I(U2, V2; Z |Q, U0, V0)

−I(U1, U2, V1, V2; Z |U0, V0). (109)
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Finally, by applying the Fourier-Motzkin procedure [37] to
(68), (69), (70)–(79), and (100)–(109) we obtain the inequal-
ities in Theorem 1.

APPENDIX D
PROOF OF THEOREM 2

To prove Theorem 2, we first show that any achievable
rate pairs (R1, R2) will satisfy (13)-(15) for some distribution
factorized as (16).

Applying Fano’s inequality [34] results in

H(W1, W2|Y n
1 ) ≤ nε1, (110)

H(W1, W2|Y n
2 ) ≤ nε2, (111)

where εi → 0, i = 1, 2 as Pn
e → 0.

We first derive the bound on R1. Note that the secrecy
condition (1) implies that

n R1 − nδ ≤ H(W1|Zn), (112)

n R2 − nδ ≤ H(W2|Zn). (113)

We first define

Qi = (Zn
i+1, Y i−1

2 ), (114)

U0,i = (W1, Qi ), (115)

V0,i = (W2, Qi ). (116)

From (112) we have,

n R1 ≤ H(W1|Zn)+nδ

= H(W1)− I(W1; Zn)+nδ
(a)≤ H(W1)−H(W1|Y n

2 )− I(W1; Zn)+n(ε2+δ)
(b)= I(W1; Y n

2 )− I(W1; Zn)+nε

=
n∑

i=1

[I(W1; Y2,i |Y i−1
2 )− I(W1; Zi |Zn

i+1)]+nε

=
n∑

i=1

[I(W1, Zn
i+1; Y2,i |Y i−1

2 )− I(Zn
i+1; Y2,i |W1, Y i−1

2 )

−I(W1, Y i−1
2 ; Zi |Zn

i+1)+I(Y i−1
2 ; Zi |W1, Zn

i+1)]+nε

(c)=
n∑

i=1

[I(W1, Zn
i+1; Y2,i |Y i−1

2 )

−I(W1, Y i−1
2 ; Zi |Zn

i+1)]+nε

=
n∑

i=1

[I(Zn
i+1; Y2,i |Y i−1

2 )+I(W1; Y2,i |Zn
i+1, Y i−1

2 )

−I(Y i−1
2 ; Zi |Zn

i+1)− I(W1; Zi |Zn
i+1, Y i−1

2 )]+nε

(d)=
n∑

i=1

[I(W1; Y2,i |Zn
i+1, Y i−1

2 )

−I(W1; Zi |Zn
i+1, Y i−1

2 )]+nε

(e)=
n∑

i=1

[I(U0,i ; Y2,i |Qi )− I(U0,i ; Zi |Qi )]+nε (117)

where (a) follows from Fano’s inequality, (b) follows by
setting ε = ε2 + δ. Equalities in (c) and (d) result from

Csiszár’s sum identity [33] where we have
n∑

i=1

I(Zn
i+1; Y2,i |W1, Y i−1

2 ) =
n∑

i=1

I(Y i−1
2 ; Zi |W1, Zn

i+1),

(118)
n∑

i=1

I(Zn
i+1; Y2,i |Y i−1

2 ) =
n∑

i=1

I(Y i−1
2 ; Zi |Zn

i+1). (119)

The equality (e) follows from definition of random variables
in (114)-(116).

Now, based on (117) we have:

n R1 ≤ n
n∑

i=1

1

n
[I(U0,K ; Y2,K |QK , K = i)

−I(U0,K ; Z K |QK , K = i)] + nε

= n
n∑

i=1

p(K = i)[I(U0,K ; Y2,K |QK , K = i)

−I(U0,K ; Z K |QK , K = i)] + nε

= n[I(U0,K ; Y2,K |QK , K )

−I(U0,K ; Z K |QK , K )] + nε

= n[I(U0; Y2|Q)− I(U0; Z |Q)] + nε (120)

where U0,K = U0, Y2,K = Y2, Z K = Z , (QK , K ) = Q and
K has a uniform distribution over {1, 2, . . . , n} outcomes.

The bounds on R2 and R1 + R2 can be proven similar to
the bound on R1 by substitution of W1 by W2 and W1 by
(W1, W2), respectively. We omit the details for brevity.

APPENDIX E
PROOF OF THEOREM 3

The proof of achievability follows from Theorem 1 by
setting U0 = U1 = U2 and V0 = V1 = V2 and considering
the fact that the channel is degraded. Now, we show that for
the degraded switch model the outer bound in Theorem 2 will
reduce to the region in Theorem 3. We need to show that the
outer bound distribution for the degraded switch case is equal
to (26). Therefore, we need to show that given Q, U0 and V0
are independent, i.e.,

I(U0; V0|Q) = 0. (121)

Moreover, we have to show that

I(U0; Y ′2|V0, Q) = I(U0; Y ′2|Q), (122)

I(V0; Y ′2|U0, Q) = I(V0; Y ′2|Q). (123)

To prove (122) and (123) we need to show that

I(U0; V0|Y ′2, Q) = 0, (124)

because if this equation holds we have

I(U0; Y ′2|Q) = I(U0; V0|Q)+ I(U0; Y ′2|V0, Q)

−I(U0; V0|Y ′2, Q)

= I(U0; Y ′2|V0, Q), (125)

I(V0; Y ′2|Q) = I(V0;U0|Q)+ I(V0; Y ′2|U0, Q)

−I(V0;U0|Y ′2, Q)

= I(V0; Y ′2|U0, Q). (126)
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From (114)-(116) and (17)-(19) the equations in (121) and
(124) are equal to the following equalities, respectively,

I(W1;W2|Zn
i+1, Sn

i+1, Y i−1
2 , Si−1) = 0, (127)

I(W1;W2|Y2,i , Si , Zn
i+1, Sn

i+1, Y i−1
2 , Si−1) = 0. (128)

First, we prove (127),

I(W1;W2|Zn
i+1, Sn

i+1, Y i−1
2 , Si−1)

=
∑
sn

i+1

∑
si−1

p(Sn
i+1 = sn

i+1, Si−1 = si−1)×

I(W1;W2|Zn
i+1, Sn

i+1 = sn
i+1, Y i−1

2 , Si−1 = si−1)

=
∑
sn

i+1

∑
si−1

n∏
j=1
j �=i

[p(Sj = s j )]

×I(W1;W2|Zn
i+1, Sn

i+1 = sn
i+1, Y i−1

2 , Si−1 = si−1).

For a given si , (22) implies that y1,i and therefore y2,i and zi

only depend on the channel input xsi ,i . By using functional
dependence graphs [40], one can show that

I(W1;W2|Zn
i+1, Sn

i+1 = sn
i+1, Y i−1

2 , Si−1 = si−1) = 0,

for fixed switch state information si−1 and sn
i+1. This com-

pletes the proof of the equality (121). By following the same
approach, we can also proof (128).

APPENDIX F
PROOF OF THEOREM 4

To prove Theorem 4, we first show that any achievable
rate pairs (R1, R2) will satisfy (27)-(29) for some distribution
factorized as (30).

Applying Fano’s inequality [34] results in

H(W1, W2|Y n
1 ) ≤ nε1 (129)

H(W1, W2|Y n
2 ) ≤ nε2 (130)

where εi → 0, i = 1, 2 as Pn
e → 0.

We first derive the bound on R1. Note that the perfect
secrecy (1) implies that

n R1 − nδ ≤ H(W1|Zn) (131)

n R2 − nδ ≤ H(W2|Zn). (132)

Define,

Qi = (Zn
i+1, Y i−1

1 , Y i−1
2 ), (133)

U0,i = (W1, Qi ), (134)

V1,i = (W2, Qi ), (135)

From (131) we have,

n R1 ≤ H(W1|Zn)+ nδ

= H(W1)− I(W1; Zn)+ nδ
(a)≤ H(W1)−H(W1|Y n

1 , Y n
2 )− I(W1; Zn)+ n(ε2 + δ)

(b)= I(W1; Y n
1 , Y n

2 )− I(W1; Zn)+ nε

=
n∑

i=1

[
I(W1; Y1,i , Y2,i |Y i−1

1 , Y i−1
2 )

−I(W1; Zi |Zn
i+1)

]+ nε

=
n∑

i=1

[
I(W1, Zn

i+1; Y1,i , Y2,i |Y i−1
1 , Y i−1

2 )

−I(Zn
i+1; Y1,i , Y2,i |W1, Y i−1

1 , Y i−1
2 )

−I(W1, Y i−1
1 , Y i−1

2 ; Zi |Zn
i+1)

+I(Y i−1
1 , Y i−1

2 ; Zi |W1, Zn
i+1)

]+ nε

(c)=
n∑

i=1

[
I(W1, Zn

i+1; Y1,i , Y2,i |Y i−1
1 , Y i−1

2 )

−I(W1, Y i−1
1 , Y i−1

2 ; Zi |Zn
i+1)

]+ nε

=
n∑

i=1

[
I(Zn

i+1; Y1,i , Y2,i |Y i−1
1 , Y i−1

2 )

+I(W1; Y1,i , Y2,i |Zn
i+1, Y i−1

1 , Y i−1
2 )

−I(Y i−1
1 , Y i−1

2 ; Zi |Zn
i+1)

−I(W1; Zi |Zn
i+1, Y i−1

1 , Y i−1
2 )

]+ nε

(d)=
n∑

i=1

[
I(W1; Y1,i , Y2,i |Zn

i+1, Y i−1
1 , Y i−1

2 )

−I(W1; Zi |Zn
i+1, Y i−1

1 , Y i−1
2 )

]+ nε

(e)=
n∑

i=1

[
I(U0,i ; Y1,i , Y2,i |Qi )− I(U0,i ; Zi |Qi )

]+ nε

(136)

where (a) follows from Fano’s inequality, (b) follows by
setting ε = ε2 + δ. Equalities in (c) and (d) result from
Csiszár’s sum identity [33] where we have

n∑
i=1

I(Zn
i+1; Y1,i , Y2,i |W1, Y i−1

1 , Y i−1
2 )

=
n∑

i=1

I(Y i−1
1 , Y i−1

2 ; Zi |W1, Zn
i+1) (137)

n∑
i=1

I(Zn
i+1; Y1,i , Y2,i |Y i−1

1 , Y i−1
2 )

=
n∑

i=1

I(Y i−1
1 , Y i−1

2 ; Zi |Zn
i+1). (138)

The equality (e) follows from definition of random variables
in (133)-(135).

Now, by applying the same time-sharing strategy as (120)
we have

R1 ≤ I(U0; Y1, Y2|Q)− I(U0; Z |Q)+ nε. (139)

The bounds on R2 and R1 + R2 can be proven similar to
the bound on R1 by substitution of W1 by W2 and W1 by
(W1, W2), respectively. We omit the details for brevity.

APPENDIX G
PROOF OF THEOREM 5

We show that specializing the achievable rate region in
Theorem 1 and the outer bound in Theorem 4 to the noiseless
switch model identically yields the rate region in Theorem 5.
In the noiseless switch model, the sum-rate constraint is
redundant and does not appear.
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Corollary 2: By setting U0 = U1 = U2 and V0 = V1 = V2
and considering the fact that Y1 = Y2, and therefore Y ′1 = Y ′2,
the achievable rate region in Theorem 1 will reduce to the set
of non-negative rate pair (R1, R2) such that

R1 ≤ I(U0; Y ′1|Q, V0)− I(U0; Z |Q), (140)

R2 ≤ I(V0; Y ′1|Q, U0)− I(V0; Z |Q), (141)

R1 + R2 ≤ I(U0, V0; Y ′1|Q)− I(U0, V0; Z |Q), (142)

for some

p(q)p(u0|q)p(v0|q)p(x1|u0)p(x2|v0). (143)

Corollary 3: By considering the fact that Y ′1 is equal to Y ′2
the outer bound in Theorem 4 will reduce to the set of couple
rates (R1, R2) satisfying

R1 ≤ I(U0; Y ′1|Q)− I(U0; Z |Q), (144)

R2 ≤ I(V0; Y ′1|Q)− I(V0; Z |Q), (145)

R1 + R2 ≤ I(U0, V0; Y ′1|Q)− I(U0, V0; Z |Q), (146)

for some joint distribution

p(q)p(u0, v0|q)p(x1|u0)p(x2|v0). (147)

By using a similar approach to the proof of Theorem 4 one
can show that for the outer bound we have

I(U0; V0|Q) = 0, (148)

I(U0; V0|Q, Y ′1) = 0. (149)

Therefore, the achievable rate region in Corollary 2 and the
outer bound in Corollary 3 meet. By setting Q = ∅, U0 = X1,
and V0 = X2 and considering the fact that the channel is
noiseless one can verify the region in Theorem 5.

APPENDIX H
PROOF OF THEOREM 6

The achievability proof is inspired by [12], and is based
on solving a dual secret key agreement problem in the
source model that includes shared randomness at all termi-
nals (see Fig. 5). In this dual model, rate constraints are
derived so that the input and output distributions of the
dual model approximate that of the original model while
satisfying reliability and secrecy conditions in the dual model.
The probability approximation then guarantees that reliabil-
ity and secrecy conditions can be achieved in the original
model. Finally, it is shown that there exists one realization
of shared randomness for which the above mentioned con-
ditions are valid, thus removing the necessity for common
randomness.

We develop the encoding and decoding strategies for the
source model and the original model, and derive and com-
pare the joint probability distributions arising from these
two strategies. We begin with the multi-terminal secret key
agreement problem in the source model as depicted in Fig. 5.
Let (Un

[0:2], V n
[0:2], Xn

1 , Xn
2 , Y n

1 , Y n
2 , Zn) be i.i.d. and distributed

according to

p(u[0:2], x1)p(v[0:2], x2)p(y1, y2, z|x1, x2). (150)

Fig. 5. Dual secret key agreement problem in the source model for the
original problem.

Random Binning:
• To each un

0, uniformly and independently assign two
random bin indices w1 ∈ [[1, 2nR1]] and f1 ∈ [[1, 2nR̃1]].

• To each pair (un
0, un

j ) for j = 1, 2 uniformly and

independently assign random bin index f ′j ∈ [[1, 2nR̃′j ]].
• To each vn

0 uniformly and independently assign two
random bin indices w2 ∈ [[1, 2nR2]] and f2 ∈ [[1, 2nR̃2 ]].

• To each pair (vn
0 , vn

j ) for j = 1, 2 uniformly and inde-

pendently assign random bin index f ′′j ∈ [[1, 2nR̃′′j ]].
• The random variables representing bin indices are:

W[1:2] , F[1:2] , F ′[1:2] , F ′′[1:2]. (151)

• Decoder 1 is a Slepian-Wolf decoder observing (yn
1 ,

f[1:2], f ′1, f ′′1 ), and producing (ûn
0, ûn

1) and (v̂n
0 , v̂n

1 ), thus
declaring ŵ1 = W1(ûn

0) and ŵ2 = W2(v̂
n
0 ) to be the

estimate of the pair (w1, w2).
• Decoder 2 is a Slepian-Wolf decoder observing (yn

2 ,
f[1:2], f ′2, f ′′2 ), and producing (ǔn

0, ǔn
2) and (v̌n

0 , v̌n
2 ), thus

declaring the bin indices w̌1 = W1(ǔn
0) and w̌2 = W2(v̌

n
0 )

as the estimate of the pair (w1, w2).
To condense the notation, we define the following variables:

f �
(

f[1:2], f ′[1:2], f ′′[1:2]
)
, (152)

û �
(
ûn

0, ǔn
0, ûn

1, ǔn
2, v̂n

0 , v̌n
0 , v̂n

1 , v̌n
2

)
. (153)

Each binning leads to a distribution (PMF). Furthermore,
in our problem, the binning itself is random and each binning
has a probability. Following Cuff [30] and [12, Remark 1], for
compact representation and ease of manipulation, we “stack”
the ordinary PMF of the individual binnings into a random
PMF. The random PMF induced by random binning is then
as follows:

P(un
[0:2], v

n
[0:2], xn

[1:2], yn
1 , yn

2 , zn, w[1:2], f, û)

= p(un[0:2], vn[0:2], xn[1:2], yn
1 , yn

2 , zn)P(w[1:2], f[1:2]|un
0, v

n
0 )

× P( f ′[1:2], f ′′[1:2]|un[0:2], vn[0:2])
×P SW (ûn

0, ûn
1, v̂n

0 , v̂n
1 |yn

1 , f[1:2], f ′1, f ′′1 )

× P SW (ǔn
0, ǔn

2, v̌n
0 , v̌n

2 |yn
2 , f[1:2], f ′2, f ′′2 )

= P(w[1:2], f[1:2], un
0, vn

0 )P( f ′[1:2], f ′′[1:2], un[1:2], vn[1:2]|un
0, vn

0 )

×p(xn
1 |un[0:2])p(xn

2 |vn[0:2])p(yn
1 , yn

2 , zn |xn
1 , xn

2 )

×P SW (ûn
0, ûn

1, v̂n
0 , v̂n

1 |yn
1 , f[1:2], f ′1, f ′′1 )

× P SW (ǔn
0, ǔn

2, v̌n
0 , v̌n

2 |yn
2 , f[1:2], f ′2, f ′′2 )
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= P(w[1:2], f[1:2])P(un
0 , vn

0 |w[1:2], f[1:2])
×P( f ′[1:2], f ′′[1:2]|un

0, v
n
0 )P(un

[1:2], v
n
[1:2]|un

0, vn
0 , f ′[1:2], f ′′[1:2])

×p(xn
1 |un[0:2])p(xn

2 |vn[0:2])p(yn
1 , yn

2 , zn|xn
1 , xn

2 )

×P SW (ûn
0, ûn

1, v̂n
0 , v̂n

1 |yn
1 , f[1:2], f ′1, f ′′1 )

× P SW (ǔn
0, ǔn

2, v̌n
0 , v̌n

2 |yn
2 , f[1:2], f ′2, f ′′2 ). (154)

Here, P SW denotes the PMF of the output of the Slepian-Wolf
decoder, which is a random PMF. Ŵ1, Ŵ2 and W̌1, W̌2 are
omitted because they are functions of other random variables.

We now return to the original problem illustrated in Fig. 1
except that, in addition, a genie provides all terminals with
shared randomness described by (F[1:2], F ′[1:2], F ′′[1:2]), whose
distribution will be clarified in the sequel. In this augmented
model:
• The messages W1 and W2 are mutually independent and

uniformly distributed with rates R1 and R2 respectively.
The shared randomness (F1, F2) is uniformly distributed
over [[1, 2nR̃1 ]], [[1, 2nR̃2]], and independent of W1, W2.

• Encoder 1 and 2 are stochastic encoders producing
codewords Un

0 and V n
0 according to distributions

P(un
0 |w[1:2], f[1:2]) and P(vn

0 |w[1:2], f[1:2]), respec-
tively, which are the marginals of distribution
P(un

0 , vn
0 |w[1:2], f[1:2]) appearing in (154). This choice

of encoder establishes a the connection between the two
models.

• The four random variables F ′[1:2], F ′′[1:2] are mutually

independent and uniformly distributed over, [[1, 2nR̃′1]] and
[[1, 2nR̃′2 ]], [[1, 2nR̃′′1 ]] and [[1, 2nR̃′′2 ]], respectively. They are
also independent of (Un

0 , V n
0 ) and therefore are indepen-

dent of (W[1:2], F[1:2]).
• Encoder 1 and 2 further generate Un

[1:2], V n
[1:2] accord-

ing to P(un[1:2]|un
0, vn

0 , f ′[1:2], f ′′[1:2]) and P(vn[1:2]|un
0,

vn
0 , f ′[1:2], f ′′[1:2]), respectively, which are marginal distrib-

utions of P(un[1:2], vn[1:2]|un
0, v

n
0 , f ′[1:2], f ′′[1:2]) from (154).

• Encoder 1 generates Xn
1 i.i.d. according to p(x1|u[0:2]).

Encoder 2 generates Xn
2 i.i.d. according to p(x2|v[0:2]).

X1, X2 are transmitted over the channel.
• Decoders 1 and 2 are Slepian-Wolf decoders inherited

from the source model secret key agreement problem,
observing (yn

1 , f[1:2], f ′1, f ′′1 ) and (yn
2 , f[1:2], f ′2, f ′′2 ), and

producing (ûn
0, ûn

1, v̂n
0 , v̂n

1 ) and (ǔn
0, ǔn

2, v̌n
0 , v̌n

2 ), respec-
tively. Therefore the following random PMFs for the
decoder output distributions are inherited from the source
model:

P SW (ûn
0, ûn

1, v̂n
0 , v̂n

1 |yn
1 , f[1:2], f ′1, f ′′1 ),

P SW (ǔn
0, ǔn

2, v̌n
0 , v̌n

2 |yn
2 , f[1:2], f ′2, f ′′2 ).

• Decoders 1 and 2 then produce estimates of (W1, W2),
which are denoted (Ŵ1, Ŵ2) and (W̌1, W̌2) respectively.

The random PMF induced by the random binning and the
encoding/decoding strategy is as follows:

P̂(un[0:2], vn[0:2], yn
1 , yn

2 , zn, w[1:2], f, û)

= pU (w[1:2])pU ( f[1:2])P(un
0, vn

0 |w[1:2], f[1:2])
× pU ( f ′[1:2])pU ( f ′′[1:2])P(un

[1:2], v
n
[1:2]|un

0, v
n
0 , f ′[1:2], f ′′[1:2])

×p(xn
1 |un[0:2])p(xn

2 |vn[0:2])p(yn
1 , yn

2 , zn |xn
1 , xn

2 )

×P SW (ûn
0, ûn

1, v̂
n
0 , v̂n

1 |yn
1 , f[1:2], f ′1, f ′′1 )

× P SW (ǔn
0, ǔn

2, v̌
n
0 , v̌n

2 |yn
2 , f[1:2], f ′2, f ′′2 ), (155)

where f and û are defined in (152) and (153), respectively,
and pU is the uniform distribution.

We now find constraints that ensure that the PMFs P̂ and
P are close in total variation distance which is a central step
in the analysis of the OSRB. For the source model secret key
agreement problem, substituting X1 = X2 ← U0, and X3 =
X4 ← V0, in [12, Theorem 1] implies that W[1:2] is nearly
independent of F[1:2] and Zn , if

R1 + R̃1 < H(U0|Z), (156)

R2 + R̃2 < H(V0|Z), (157)

R1 + R̃1 + R2 + R̃2 < H(U0, V0|Z). (158)

Note that [12, Theorem 1] returns a total of 15 inequalities,
but the remaining are redundant because of (156)–(158). The
above constraints imply that

P(zn , w[1:2], f[1:2]) ≈ε p(zn)pU (w[1:2])pU ( f[1:2]).

Similarly, substituting X1 ← (U0, U1), X2 ← (U0, U2),
X3 ← (V0, V1), X4 ← (V0, V2), and Z ← (U0, V0, Z) in
[12, Theorem 1] implies that ( f ′[1:2], f ′′[1:2]) are nearly mutually
independent and independent of (U0, V0, Z), therefore they are
independent of (w[1:2], f[1:2]), if

R̃′j < H(U j |U0, V0, Z), (159)

R̃′′j < H(Vj |U0, V0, Z), (160)

R̃′1 + R̃′′j < H(U1, Vj |U0, V0, Z), (161)

R̃′2 + R̃′′j < H(U2, Vj |U0, V0, Z), (162)

R̃′1 + R̃′2 < H(U1, U2|U0, V0, Z), (163)

R̃′′1 + R̃′′2 < H(V1, V2|U0, V0, Z), (164)

R̃′1 + R̃′2 + R̃′′j < H(U1, U2, Vj |U0, V0, Z), (165)

R̃′j + R̃′′1 + R̃′′2 < H(U j , V1, V2|U0, V0, Z), (166)

R̃′1 + R̃′2+ R̃′′1+ R̃′′2 < H(U1, U2, V1, V2|U0, V0, Z), (167)

for j = 1, 2. The above constraints imply

P(zn, un
0, vn

0 , f ′[1:2], f ′′[1:2])
≈ε p(zn, un

0, vn
0 )pU ( f ′[1:2])pU ( f ′′[1:2]). (168)

Hence,

P(w[1:2], f[1:2]) ≈ε P̂(w[1:2], f[1:2])
= pU (w[1:2])pU ( f[1:2]), (169)

P( f ′[1:2], f ′′[1:2]|un
0, vn

0 ) ≈ε P̂( f ′[1:2], f ′′[1:2]|un
0, v

n
0 )

= pU ( f ′[1:2])pU ( f ′′[1:2]). (170)

In other words, the inequalities (156)–(158) and (159)–(167)
imply that

P(zn, w[1:2], f[1:2], f ′[1:2], f ′′[1:2])
≈ε p(zn)pU (w[1:2])pU ( f[1:2])pU ( f ′[1:2])pU ( f ′′[1:2]). (171)

Here, the PMF P(zn) is equal to p(zn) because the marginal
distribution does not include random binning.
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Therefore, the distributions in (154) and (155) are nearly
equal, that is

P(un[0:2], vn[0:2], yn
1 , yn

2 , zn, w[1:2], f, û)

≈ε P̂(un[0:2], vn[0:2], yn
1 , yn

2 , zn, w[1:2], f, û). (172)

Similar to indirect decoding for channel coding it is possible
to use indirect decoding for source coding. More precisely,
the first and the second decoders only need (un

0, vn
0 ) to decode

(w1, w2). Decoder 1 and Decoder 2 can indirectly decode
(un

0, v
n
0 ) from (yn

1 , f[1:2], f ′1, f ′′1 ) and (yn
2 , f[1:2], f ′2, f ′′2 ),

respectively. From [12, Lemma 1] decoding is successful if

R̃1 + R̃′j > H(U0, U j |V0, Vj , Y j ), (173)

R̃2 + R̃′′j > H(V0, Vj |U0, U j , Y j ), (174)

R̃1 + R̃′j + R̃′′j > H(U0, U j , Vj |V0, Y j ), (175)

R̃1 + R̃2 + R̃′′j > H(V0, Vj |U0, U j , Y j ), (176)

R̃′j + R̃2 + R̃′′j > H(U j , V0, Vj |U0, Y j ), (177)

R̃1 + R̃′j + R̃2 + R̃′′j > H(U0, U j , V0, Vj |Y j ), (178)

for j = 1, 2. Note that, inequality (176) is redundant because
of (174). It yields

P(un[0:2], vn[0:2], yn
1 , yn

2 , zn, w[1:2], f, û)

≈ε P(un
[0:2], v

n
[0:2], yn

1 , yn
2 , zn, w[1:2], f)

×1{
ûn

0=ǔn
0=un

0 ,ûn
1=un

1,ǔn
2=un

2

} × 1{
v̂n

0=v̌n
0=vn

0 ,v̂n
1=vn

1 ,v̌n
2=vn

2

}.

(179)

From equations (172), (179), and the triangle inequality,

P̂(un[0:2], vn[0:2], yn
1 , yn

2 , zn, w[1:2], f, û)

≈ε P(un[0:2], vn[0:2], yn
1 , yn

2 , zn, w[1:2], f)

×1{
ûn

0=ǔn
0=un

0 ,ûn
1=un

1,ǔn
2=un

2

} × 1{
v̂n

0=v̌n
0=vn

0 ,v̂n
1=vn

1 ,v̌n
2=vn

2

}.

(180)

For convenience, we reintroduce a lemma from [12]:
Lemma 2: ( [12, Lemma 4]) Consider distributions pXn ,

pY n|Xn , qXn , and qY n|Xn and random PMFs PXn , PY n |Xn ,
QXn , and QY n |Xn . Denoting asymptotic equality under total
variation with ≈ε , we have:

1)

PXn ≈ε QXn ⇒ PXn PY n |Xn ≈ε QXn PY n |Xn , (181)

PXn PY n |Xn ≈ε QXn QY n |Xn ⇒ PXn ≈ε QXn . (182)

2) If pXn pY n |Xn ≈ε qXn qY n |Xn , then there exists a sequence
xn ∈ X n such that

pY n|Xn=xn ≈ε qY n |Xn=xn . (183)

3) If PXn ≈ε QXn and PXn PY n |Xn ≈ε PXn QY n |Xn , then

PXn PY n |Xn ≈ε QXn QY n |Xn . (184)

Using Lemma 2, Equation (182), the marginal distributions
of the two sides of (180) are asymptotically equivalent, i.e.,

P̂(un
[0:2], v

n
[0:2], zn, w[1:2], f, û) ≈ε P(un

[0:2], v
n
[0:2], zn, w[1:2], f)

×1{
ûn

0=ǔn
0=un

0 ,ûn
1=un

1,ǔn
2=un

2

}1{
v̂n

0=v̌n
0=vn

0 ,v̂n
1=vn

1 ,v̌n
2=vn

2

}.

(185)

Using Lemma 2, Equation (181) we multiply the two sides of
Equation (185) by the conditional distribution:

P̂(ŵ1, w̌1, ŵ2, w̌2|un[0:2], vn[0:2], zn, w[1:2], f, û)

= 1{
W1(ûn

0)=ŵ1,W1(ǔn
0)=w̌1

} × 1{
W2(v̂

n
0 )=ŵ2,W2(v̌

n
0 )=w̌2

},

to get:

P̂(un[0:2], vn[0:2], zn, w[1:2], f, û, ŵ1, w̌1, ŵ2, w̌2)

≈ε P(un[0:2], vn[0:2], zn, w[1:2], f)

×1{
ûn

0=ǔn
0=un

0 ,ûn
1=un

1,ǔn
2=un

2

} × 1{
v̂n

0=v̌n
0=vn

0 ,v̂n
1=vn

1 ,v̌n
2=vn

2

}
×1{

W1(ûn
0)=ŵ1,W1(ǔn

0)=w̌1

} × 1{
W2(v̂

n
0 )=ŵ2,W2(v̌

n
0 )=w̌2

}
= P(un[0:2], vn[0:2], zn, w[1:2], f)× 1{

ûn
0=ǔn

0=un
0 ,ûn

1=un
1,ǔn

2=un
2

}
×1{

v̂n
0=v̌n

0=vn
0 ,v̂n

1=vn
1 ,v̌n

2=vn
2

} × 1{
ŵ1=w̌1=w1,ŵ2=w̌2=w2

},

(186)

where W1(un
0) = ŵ1 and W2(v

n
0 ) = ŵ2 denote the bins

assigned to un
0 and vn

0 , respectively. Using (186) and Lemma 2,
Equation (181) leads to

P̂(zn, w[1:2], f, ŵ1, w̌1, ŵ2, w̌2) ≈ε P(zn, w[1:2], f)

×1{
ŵ1=w̌1=w1,ŵ2=w̌2=w2

}. (187)

Using equations (171) and (187) and Lemma 2, Equa-
tion (184) leads to

P̂(zn, w[1:2], f, ŵ1, w̌1, ŵ2, w̌2) ≈ε p(zn)pU (w[1:2], f[1:2])
×pU ( f ′[1:2], f ′′[1:2])× 1{

ŵ1=w̌1=w1,ŵ2=w̌2=w2

}. (188)

We now eliminate the shared randomness (F[1:2], F ′[1:2],
F ′′[1:2]) without affecting the secrecy and reliability require-
ments which is a key step in the analysis of OSRB. By using
Definition 3, Equation (188) ensures that there exists a fixed
binning with corresponding PMF p that, if used in place of
the random coding strategy P in (155), will induce the PMF
p̂ as follows:

p̂(zn, w[1:2], f[1:2], f ′[1:2], f ′′[1:2], ŵ1, w̌1, ŵ2, w̌2)

≈ε p(zn)pU (w[1:2], f[1:2])pU ( f ′[1:2], f ′′[1:2])
×1{

ŵ1=w̌1=w1,ŵ2=w̌2=w2

}. (189)

Now, using Lemma 2, Equation (183) shows that there exists
an instance of ( f[1:2], f ′[1:2], f ′′[1:2]) such that:

p̂(zn, w[1:2], ŵ1, w̌1, ŵ2, w̌2| f[1:2], f ′[1:2], f ′′[1:2])
≈ε p(zn)pU (w1)pU (w2)1{

ŵ1=w̌1=w1,ŵ2=w̌2=w2

}. (190)

This distribution satisfies the secrecy and reliability require-
ments as follows:
• Reliability: Using Lemma 2, Equation (182) leads to

p̂(w[1:2], ŵ1,1, ŵ1,2, ŵ2,1, ŵ2,2| f[1:2], f ′[1:2], f ′′[1:2])
≈ε 1{

ŵ1=w̌1=w1,ŵ2=w̌2=w2

}, (191)

which is equivalent to:

p̂
(
{(Ŵ1, Ŵ2) �= (W1, W2)} ∪ {(W̌1, W̌2) �= (W1, W2)}∣∣∣ f[1:2], f ′[1:2], f ′′[1:2]

)
→ 0.
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• Security: Again, using Lemma 2, Equation (182)

p̂(zn, w[1:2]| f[1:2], f ′[1:2], f ′′[1:2]) ≈ε p(zn)pU (w1)pU (w2).

Finally, we identify p(xn
1 |w1, f1, f ′[1:2]) and p(xn

2 |w2, f2,
f ′′[1:2]) (which is done by generating u[0:2] and v[0:2] first,
respectively) as encoders and the Slepian-Wolf decoders as
decoders for the channel coding problem. These encoders and
decoders lead to reliable and secure encoders and decoders.

By applying a computer generated Fourier-Motzkin proce-
dure [36] to (156)–(167), (173), (174), and (178) the achiev-
able rate region for the strong secrecy regime in Theorem 6
is obtained.

Remark 7: The random distributions P(un
0, vn

0 |w[1:2],
f[1:2]) and P(un[1:2], vn[1:2]|un

0, v
n
0 , f ′[1:2], f ′′[1:2]) factorize as

P(un
0 |w1, f1)P(vn

0 |w2, f2) and P(un[1:2]|un
0, f ′[1:2])P(vn[1:2]|vn

0 ,

f ′′[1:2]), respectively, which means that Encoders 1 and 2 are
not using the common randomness and the message available
at the other encoder to generate the common and private
random variables. The common randomness (F1, F ′[1:2])
represents the realization of Encoder 1’s codebook and
(F2, F ′′[1:2]) represents the realization of Encoder 2’s codebook,
which is available at all terminals, but the codebook at one
encoder does not depend on the codebook of the other encoder.

Remark 8: The achievable region described in the proof
of Theorem 6 was without time sharing, i.e., Q = ∅. One
can incorporate this into the proof by generating i.i.d. copies
of Q, and sharing it among all terminals and conditioning
everything on it.
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