Skip to main content

Regulation of Flowering in Orchids

  • Chapter
  • First Online:
The Orchid Genome

Abstract

Orchids constitute the largest families within the flowering plants; they are one of the most highly evolved groups in the angiosperms; and because of their flashy flowers many species from several genera are very prominent horticultural commodities. Environmental factors such as temperature and daylength influence flowering; however, other factors play a major role such as the developmental stage, plant hormonal regulation and genetic factors. Research on model plants such as the thale cress (Arabidopsis thaliana) and rice (Oryza sativa) has allowed a broad understanding of the genetics and the molecular regulation of flowering in most plants. However, until very recently the specifics of floral regulation in orchids had remained quite obscure. In this review we have examined very recent work concerning flowering of orchids with a focus on the interplay between development, environmental cues, plant hormones, and gene networks. We have highlighted several examples of successful manipulation of flowering through biotechnology that may be very relevant for researchers and growers elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Abraham A, Vatsala P (1981) Introduction to Orchids with Illustrations and Descriptions of 150 South Indian Orchids. TBGRI, Trivandrum, Kerala, India

    Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahsan MU, Hayward A, Irihimovitch V, Fletcher S, Tanurdzic M, Pocock A, Beveridge CA, Mitter N (2019) Juvenility and vegetative phase transition in tropical/subtropical tree crops. Front Plant Sci 10:729

    Article  PubMed  PubMed Central  Google Scholar 

  • Alejandra Mandel M, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  Google Scholar 

  • An FM, Hsiao SR, Chan MT (2011) Sequencing-based approaches reveal low ambient temperature-responsive and tissue-specific microRNAs in Phalaenopsis orchid. PLoS One 6:e18937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    Article  PubMed  CAS  Google Scholar 

  • Arditti J (1979) Aspects of the Physiology of Orchids. Academic Press, London

    Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Audus LJ (1972) Plant Growth Substances I. Chemistry and Physiology, Leonard Hill, London

    Google Scholar 

  • Ausín I, Alonso-Blanco C, Jarillo JA, Ruiz-García L, Martínez-Zapater JM (2004) Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet 36:162–166

    Article  PubMed  CAS  Google Scholar 

  • Bünning E (1936) Die endogene tagesrhythmik als grundlage der photoperiodischen reaktion. Ber Dtsch Bot Ges 54:590–607

    Google Scholar 

  • Baker ML, Baker CO (1993) Miltoniopsis culture II. Amer Orchid Soc Bull 62:901–908

    Google Scholar 

  • Baker ML, Baker CO (1996) Orchid Species Culture: Dendrobium. Timber Press, Portland

    Google Scholar 

  • Bartrina I, Otto E, Strnad M, Werner T, Schmülling T (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23:69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batchelor RS (2011) Beginner’s series, Orchid culture: Part 4, Light and temperature. https://staugorchidsociety.org/PDF/AOS4-LightTemp.pdf

  • Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    Article  CAS  PubMed  Google Scholar 

  • Benlloch R, Kim MC, Sayou C, Thévenon E, Parcy F, Nilsson O (2011) Integrating long-day flowering signals: a LEAFY binding site is essential for proper photoperiodic activation of APETALA1. Plant J 67:1094–1102

    Article  CAS  PubMed  Google Scholar 

  • Bernier G (1988) The control of floral evocation and morphogenesis. Annu Rev Plant Physiol Plant Mol Biol 39:175–219

    Article  Google Scholar 

  • Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P (1993) Physiological signals that induce flowering. Plant Cell 5:1147–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernier G, Kinet J, Sachs RM (1981) The Physiology of Flowering, vol. 1. CRC Press, Boca Raton, pp 106–107

    Google Scholar 

  • Blanchard MG, Runkle ES (2006) Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. J Exp Bot 57:4043–4049

    Article  CAS  PubMed  Google Scholar 

  • Blanchard MG, Runkle ES (2005) Temperature regulates flowering of two Odontioda orchid hybrids. HortScience 40:1404–1409

    Article  Google Scholar 

  • Blanchard MG, Runkle ES (2008a) Benzyladenine promotes flowering in Doritaenopsis and Phalaenopsis orchids. J Plant Growth Regul 27:141

    Article  CAS  Google Scholar 

  • Blanchard MG, Runkle ES (2008b) Temperature and pseudobulb size influence flowering of Odontioda orchids. HortScience 43:1404–1409

    Article  Google Scholar 

  • Bouché F, Lobet G, Tocquin P, Périlleux C (2016) FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44:D1167–D1171

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    Article  CAS  Google Scholar 

  • Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Y, Xu Q, Bian C, Zheng Z, Sun F, Liu W, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Dievart A, Dufayard JF, Xu X, Wang JY, Wang J, Xiao XJ, Zhao XM, Du R, Zhang GQ, Wang M, Su YY, Xie GC, Liu GH, Li LQ, Huang LQ, Luo YB, Chen HH, Van de Peer Y, Liu ZJ (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72

    Article  CAS  PubMed  Google Scholar 

  • Campos KO, Kerbauy GB (2004) Thermoperiodic effect on flowering and endogenous hormonal status in Dendrobium (Orchidaceae). J Plant Physiol 161:1385–1387

    Article  CAS  PubMed  Google Scholar 

  • Cardoso JC, Ono EO, Rodrigues JD (2010) Gibberellic acid and water regime in the flowering induction of Brassocattleya and Cattleya hybrid orchids. Hortic Bras 28:395–398

    Article  Google Scholar 

  • Chandler J, Dean C (1994) Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana (L.) Heynh. J Exp Bot 45:1279–1288

    Article  CAS  Google Scholar 

  • Chang CC, Yang AH, Wang SS (2015) Studies on the regulation of flowering of Paphiopedilum orchids. Res Bull Tainan Dist Agri Improv Stn 65:10–19 (in Chinese)

    Google Scholar 

  • Chang YY, Chiu YF, Wu JW, Yang CH (2009) Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 50:1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Chen WS, Chang HW, Chen WH, Lin YS (1997) Gibberellic acid and cytokinin affect Phalaenopsis flower morphology at high temperature. HortScience 32:1069–1073

    Article  CAS  Google Scholar 

  • Chen WS, Liu HY, Liu ZH, Yang L, Chen WH (1994) Geibberllin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiol Plant 90:391–395

    Article  CAS  Google Scholar 

  • Chen W, Qin Q, Zhang C, Zheng Y, Wang C, Zhou M, Cui Y (2015) DhEFL2, 3 and 4, the three EARLY FLOWERING4-like genes in a Doritaenopsis hybrid regulate floral transition. Plant Cell Rep 34:2027–2041

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Qin Q, Zheng Y, Wang C, Wang S, Zhou M, Zhang C, Cui Y (2016) Overexpression of Doritaenopsis hybrid EARLY FLOWERING 4-like4 gene, DhEFL4, postpones flowering in transgenic Arabidopsis. Plant Mol Biol Rep 34:103–117

    Article  CAS  Google Scholar 

  • Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. Plant J 90:708–719

    Article  CAS  PubMed  Google Scholar 

  • Corbesier L, Coupland G (2005) Photoperiodic flowering of Arabidopsis: integrating genetic and physiological approaches to characterization of the floral stimulus. Plant Cell Environ 28:54–66

    Article  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60:2529–2539

    Article  CAS  PubMed  Google Scholar 

  • Cumming BG (1959) Extreme sensitivity of germination and photoperiodic reaction in the genus Chenopodium (Tourn.) L. Nature 184:1044–1045

    Article  CAS  PubMed  Google Scholar 

  • Dahlia (2016) Paphiopedilum flowering induction with light intensity and growth regulator substance. In: AIP Conference Proceedings 1744: 020010

    Google Scholar 

  • Dalström S, Higgins WE (2016) New combinations and transfers to Odontoglossum Oncidiinae (Orchidaceae): avoid creating new names. Harvard Papers in Botany 21:97–104

    Article  Google Scholar 

  • Damann MP, Lyons RE (1993) Juvenility, flowering and the effects of a limited inductive photoperiod in Coreopsis grandiflora and C. landceolata. J Am Soc Hortic Sci 118:513–518

    Article  Google Scholar 

  • Davière JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  PubMed  CAS  Google Scholar 

  • Day J, Loveys B, Aspinall D (1995) Cytokinin and carbohydrate changes during flowering of Boronia megastigma. Funct Plant Biol 22:57–65

    Article  CAS  Google Scholar 

  • de Melo Ferreira W, Barbante Kerbauy G, Elizabeth Kraus J, Pescador R, Mamoru Suzuki R (2006) Thidiazuron influences the endogenous levels of cytokinins and IAA during the flowering of isolated shoots of Dendrobium. J Plant Physiol 163:1126–1134

    Article  CAS  Google Scholar 

  • De Vries JT (1953) On the flowering of Phalaenopsis schilleriana RCHB. f. Annu Bogor 1:61–76

    Google Scholar 

  • Dewitte W, Chiappetta A, Azmi A, Witters E, Strnad M, Rembur J, Noin M, Chriqui D, Van Onckelen H (1999) Dynamics of cytokinins in apical shoot meristems of a day-neutral tobacco during floral transition and flower formation. Plant Physiol 119:111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Wang Y, Yu H (2013) Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile. Plant Cell Physiol 54:595–608

    Article  CAS  PubMed  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184

    Article  CAS  PubMed  Google Scholar 

  • Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognár L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419:74–77

    Article  CAS  PubMed  Google Scholar 

  • Dressler RL, Higgins WE (2003) Guarianthe, a generic name for the “Cattleya” skinneri complex. Lankesteriana 7:37–38

    Google Scholar 

  • Eigeldinger O, Murphy LS (1972) Orchids: a Complete Guide to Cultivation. Drake Publ, New York

    Google Scholar 

  • Friend DJC (1968) Photoperiodic responses of Brassica campestris cv Ceres. Physiol Plant 21:990–1002

    Article  Google Scholar 

  • Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment of growth and reproduction in plants. J Agric Res 18:553–603

    Google Scholar 

  • Gao J, Liang D, Xu Q, Yang F, Zhu G (2020) Involvement of CsERF2 in leaf variegation of Cymbidium sinense ‘Dharma’. Planta 252:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh CJ (1977) Regulation of floral initiation and development in an orchid hybrid Aranda Deborah. Ann Bot 41:763–769

    Article  Google Scholar 

  • Goh CJ (1979) Hormonal regulation of flowering in a sympodial orchid hybrid Dendrobium Louisae. New Phytol 82:375–380

    Article  CAS  Google Scholar 

  • Goh CJ (1985) Flowering in tropical orchids. In: Proceedings of XIth World Orchid Conf 17 May 1982, Florida, pp 166–173

    Google Scholar 

  • Goh CJ, Wan HY (1973) The role of auxins in flowering of a tropical orchid hybrid Vanda X Miss. Sumiki Y (ed) Plant Growth Substances, Hirotaka Publ Co, Tokyo 91:945–952

    Google Scholar 

  • Goh CJ, Yang AL (1978) Effects of growth regulators and decapitation on flowering of Dendrobium orchid hybrids. Plant Sci Lett 12:278–292

    Article  Google Scholar 

  • Goh CJ, Strauss MS, Arditti J, Arditti J (1982a) Flower Induction and Physiology in Orchids. Cornell University Press, Ithaca

    Google Scholar 

  • Goh CJ, Strauss MS, Arditti J (1982b) Flower induction and physiology in orchids. In: Arditti J (ed) Orchid Biology: Reviews and Perspectives, II. Cornell University Press, Ithaca, NY, pp 213–241

    Google Scholar 

  • Gray WM (2004) Hormonal regulation of plant growth and development. PLoS Biol 2:e311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griesbach RJ (1985) An orchid in every pot. Florists’ Rev 176:26–30

    Google Scholar 

  • Hackett WP (1986) Juvenility, maturation, and rejuvenation in woody plants. Hortic Rev 7:109–155

    Google Scholar 

  • Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21:351–360

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 135:677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Amasino RM (2005) Role of chromatin modification in flowering-time control. Trends Plant Sci 10:30–35

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Sponsel V (2015) A century of gibberellin research. J Plant Growth Regul 34:740–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennig L, Bouveret R, Gruissem W (2005) MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 15:295–302

    Article  CAS  PubMed  Google Scholar 

  • Hew CS, Clifford PE (1993) Plant growth regulators and the orchid cut-flower industry. Plant Growth Regul 13:231–239

    Article  CAS  Google Scholar 

  • Hew CS, Yong JWH (2004) The Physiology of Tropical Orchids in Relation to the Industry, 2nd edn. World Scientific, Singapore

    Book  Google Scholar 

  • Higuchi H, Sakai K (1977) The effect of N6-benzyladenine on the flowering of Dendrobium Nodoka. Res Bull Aichi-Ken Agric Res Cent, Series B 9:79–81

    Google Scholar 

  • Holttum RE (1949) Gregarious flowering of the terrestrial orchid Bromheadia finlaysoniana. Gard Bull (Singapore) 12:295–302

    Google Scholar 

  • Hou CJ, Yang CH (2009) Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol 50:1544–1557

    Article  CAS  PubMed  Google Scholar 

  • Hsu HF, Huang CH, Chou LT, Yang CH (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44:783–794

    Article  CAS  PubMed  Google Scholar 

  • Hsu HF, Yang CH (2002) An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol 43:1198–1209

    Article  CAS  PubMed  Google Scholar 

  • Huang JZ, Lin CP, Cheng TC, Huang YW, Tsai YJ, Cheng SY, Chen YW, Lee CP, Chung WC, Chang BCH, Chin SW, Lee CY, Chen FC (2016) The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ 4:e2017

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Husbands AY, Chitwood DH, Plavskin Y, Timmermans MCP (2009) Signals and prepatterns: new insights into organ polarity in plants. Genes Dev 23:1986–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichihashi S, Arditti J, Pridgeon AM (1997) Orchid Production and Research in Japan. Kluwer Academic Publisher

    Google Scholar 

  • Imaizumi T, Kay SA (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci 11:550–558

    Article  CAS  PubMed  Google Scholar 

  • Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2:741–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacqmard A, Detry N, Dewitte W, Van Onckelen H, Bernier G (2002) In situ localisation of cytokinins in the shoot apical meristem of Sinapis alba at floral transition. Planta 214:970–973

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Graf A, Wigge PA (2006) The control of flowering in time and space. J Exp Bot 57:3415–3418

    Article  CAS  PubMed  Google Scholar 

  • Jagadish SVK, Bahuguna RN, Djanaguiraman M, Gamuyao R, Prasad PVV, Craufurd PQ (2016) Implications of high temperature and elevated CO2 on flowering time in plants. Front Plant Sci 7:913

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang S (2015) Functional characterization of PhapLEAFY, a FLORICAULA/LEAFY ortholog in Phalaenopsis aphrodite. Plant Cell Physiol 56:2234–2247

    CAS  PubMed  Google Scholar 

  • Jang S, Choi SC, Li HY, An G, Schmelzer E (2015) Functional characterization of Phalaenopsis aphrodite flowering genes PaFT1 and PaFD. PLoS One 10:e0134987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johansson M, Staiger D (2014) Time to flower: interplay between photoperiod and the circadian clock. J Exp Bot 66:719–730

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573

    Article  CAS  PubMed  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Ke YT, Lin KF, Gu CH, Yeh CH (2020) Molecular characterization and expression profile of PaCOL1, a CONSTANS-like gene in Phalaenopsis orchid. Plants (Basel) 9:E68

    Article  CAS  Google Scholar 

  • Kieber JJ, Schaller GE (2018) Cytokinin signaling in plant development. Development 145:dev149344

    Google Scholar 

  • Kidner CA, Martienssen RA (2005) The developmental role of microRNA in plants. Curr Opin Plant Biol 8:38–44

    Article  CAS  PubMed  Google Scholar 

  • Kieffer M, Davies B (2001) Developmental programmes in floral organ formation. Semin Cell Dev Biol 12:373–380

    Article  CAS  PubMed  Google Scholar 

  • Kikis EA, Khanna R, Quail PH (2005) ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J 44:300–313

    Article  CAS  PubMed  Google Scholar 

  • Kim TJ, Lee CH, Paek KY (2000) Effects of growth regulators under low temperature environment on growth and flowering of Doritaenopsis ‘Happy Valentine’ during summer. J Kor Soc Hortic Sci 41:101–104

    Google Scholar 

  • Kim YJ, Lee HJ, Kim KS (2011) Night interruption promotes vegetative growth and flowering of Cymbidium. Sci Hortic 130:887–893

    Article  Google Scholar 

  • Klebs G (1918) Über die blütenbildung von sempervivum. Flora oder Allgemeine Bot Zeit 111–112:128–151

    Article  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Koehn A (1952) Chinese flower symbolism. Monumenta Nipponica 8:121–146. https://www.jstor.org/stable/2383008

  • Koh KW, Lee S-H, Chen HK, Chang CY, Chan MT (2018) Phalaenopsis flowering locus VE regulates floral organ maturation. Plant Cell Rep 37:467–482

    Article  CAS  PubMed  Google Scholar 

  • Kostenyuk I, Oh BJ, So IS (1999) Induction of early flowering in Cymbidium niveo-marginatum Mak in vitro. Plant Cell Rep 19:1–5

    Article  CAS  PubMed  Google Scholar 

  • Kyozuka J (2007) Control of shoot and root meristem function by cytokinin. Curr Opin Plant Biol 10:442–446

    Article  CAS  PubMed  Google Scholar 

  • Langridge J (1957) Effect of day-length and gibberellic acid on the flowering of Arabidopsis. Nature 180:36–37

    Article  CAS  Google Scholar 

  • Lee N, Lin GM, Chang LR (1987) Controlling the flowering of Phalaenopsis. In: Paper presented at the proceedings on symposium forcing Cult Hortic Crops Special Publ 10. Taichung District Agr. Improvement Stn (in Chinese)

    Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J 55:832–843

    Article  CAS  PubMed  Google Scholar 

  • Lee YR, Lee DW, Won JY, Kim MS, Kim JY, Lee JS (1998) Effect of BA on flowering of Cymbidium ensifolium ‘Tekkotsusosin’. Korean J Hortic Sci Technol 16:531–532

    Google Scholar 

  • Leonhardt KW (2000) Potted blooming Dendrobium orchids. HortTechnology 10:431--432

    Google Scholar 

  • Li G, Siddiqui H, Teng Y, Lin R, Wan XY, Li J, Lau OS, Ouyang X, Dai M, Wan J, Devlin PF, Deng XW, Wang H (2011) Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13:616–622

    Article  CAS  PubMed  Google Scholar 

  • Li R, Wang A, Sun S, Liang S, Wang X, Ye Q, Li H (2012) Functional characterization of FT and MFT ortholog genes in orchid (Dendrobium nobile Lindl) that regulate the vegetative to reproductive transition in Arabidopsis. Plant Cell Tissue Organ Cult 111:143–151

    Article  CAS  Google Scholar 

  • Lin CS, Hsu CT, Liao DC, Chang WJ, Chou ML, Huang YT, Chen JJW, Ko SS, Chan MT, Shih MC (2016) Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. Plant Biotechnol J 14:284–298

    Article  CAS  PubMed  Google Scholar 

  • Lin YJ, Li MJ, Hsing HC, Chen TK, Yang TT, Ko SS (2019) Spike Activator 1, encoding a bHLH, mediates axillary bud development and spike initiation in Phalaenopsis aphrodite. Int J Mol Sci 20:E5406

    Article  PubMed  CAS  Google Scholar 

  • Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803

    Article  CAS  PubMed  Google Scholar 

  • Lopez RG, Runkle ES (2004a) The effect of temperature on leaf and flower development and flower longevity of Zygopetalum redvale ‘Fire Kiss’ orchid. HortScience 39:1630–1634

    Article  Google Scholar 

  • Lopez RG, Runkle ES (2004b) The flowering of orchids. Orchids (March 2004) pp 196–203

    Google Scholar 

  • Lopez RG, Runkle ES (2004) The effect of temperature on leaf and flower development and flower longevity of Zygopetalum Redvale 'Fire Kiss' orchid. HortScience 39:1630–1634

    Google Scholar 

  • Lopez RG, Runkle ES (2005) Environmental physiology of growth and flowering of orchids. HortScience 40:1969–1973

    Article  Google Scholar 

  • Lopez RG, Runkle ES (2006) Temperature and photoperiod regulate flowering of potted Miltoniopsis orchids. HortScience 41:593–597

    Article  Google Scholar 

  • Lopez RG, Runkle ES, Heins RD, Whitman CM (2003) Temperature and photoperiodic effects on growth and flowering of Zygopetalum redvale ‘Fire Kiss’ orchids. Acta Hortic 624:155–162

    Article  Google Scholar 

  • Lumsden PJ (2002) Photoperiodism in plants. In: Kumar V (ed) Biological Rhythms. Springer, Berlin Heidelberg, pp 181–191

    Chapter  Google Scholar 

  • Macháčková I, Krekule J, Eder J, Seidlová F, Strnad M (1993) Cytokinins in photoperiodic induction of flowering in Chenopodium species. Physiol Plant 87:160–166

    Article  Google Scholar 

  • Matsumoto TK (2006) Gibberellic acid and benzyladenine promote early flowering and vegetative growth of Miltoniopsis orchid hybrids. HortScience 41:131–135

    Article  CAS  Google Scholar 

  • McWatters HG, Kolmos E, Hall A, Doyle MR, Amasino RM, Gyula P, Nagy F, Millar AJ, Davis SJ (2007) ELF4 is required for oscillatory properties of the circadian clock. Plant Physiol 144:391–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercier H, Endres L (1999) Alteration of hormonal levels in a rootless epiphytic bromeliad in different phenological phases. J Plant Growth Regul 18:121–125

    Article  CAS  PubMed  Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  CAS  PubMed  Google Scholar 

  • Mor Y, Halevy AH (1979) Translocation of 14C-assimilates in roses. Physiol Plant 45:177–182

    Article  Google Scholar 

  • Morrison A (2000) The Illustrated Encyclopedia of Orchids. Timber Press, Portland

    Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time. interacting pathways as a basis for diversity. Plant Cell 14 Suppl:S111–130

    Google Scholar 

  • Murashige T, Kamemoto H, Sheehan TJ (1967) Experiments on the seasonal flowering behaviour of Vanda Miss Joaquim. Proc Amer Soc Hort Sci 91:672–679

    Google Scholar 

  • Nemhauser JL, Zambryski PC, Roe JL (1998) Auxin signaling in Arabidopsis flower development? Commentary. Curr Opin Plant Biol 1:531–535

    Article  CAS  PubMed  Google Scholar 

  • Newton LA, Runkle ES (2009) High-temperature inhibition of flowering of Phalaenopsis and Doritaenopsis orchids. HortScience 44:1271–1276

    Article  Google Scholar 

  • Newton LA, Runkle ES (2015) Effects of benzyladenine on vegetative growth and flowering of potted Miltoniopsis orchids. Acta Hortic 1078:121–127

    Article  Google Scholar 

  • Nisha N, Siang T, Maziah M (2012) Effect of 6-benzylaminopurine on flowering of a Dendrobium orchid. Aus J Crop Sci 6:225–231

    Google Scholar 

  • Ohno H (1991) Microsporogenesis and flower bud blasting as affected by high temperature and gibberelic acid in Cymbidium (Orchidaceae). J Jpn Soc Hortic Sci 60:149–257

    Article  CAS  Google Scholar 

  • Panjama K, Suzuki E, Otani M, Nakano M, Ohtake N, Ohyama T, Bundithya W, Sueyoshi K, Ruamrungsri S (2019) Isolation and functional analysis of FLOWERING LOCUS T orthologous gene from Vanda hybrid. J Plant Biochem Biotechnol 28:374–381

    Article  CAS  Google Scholar 

  • Parcy F, Nilsson O, Busch MA, Lee I, Weigel D (1998) A genetic framework for floral patterning. Nature 395:561–566

    Article  CAS  PubMed  Google Scholar 

  • Perilli S, Moubayidin L, Sabatini S (2010) The molecular basis of cytokinin function. Curr Opin Plant Biol 13:21–26

    Article  CAS  PubMed  Google Scholar 

  • Pillitteri LJ, Lovatt CJ, Walling LL (2004) Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiol 135:1540–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poethig RS (2010) The past, present, and future of vegetative phase change. Plant Physiol 154:541–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell C, Caldwell KI, Littler RA, Warrington I (1988) Effect of temperature regime and nitrogen fertilizer level on vegetative and reproductive bud development in Cymbidium orchids. J Amer Soc Hortic Sci 113:552–556

    Article  Google Scholar 

  • Pridgeon A (2000) The Illustrated Encyclopedia of Orchids. Timber Press, Oregon

    Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Rittershausen B, Rittershausen W (2003) Growing Orchids. Hermes House, London

    Google Scholar 

  • Rotor GB (1952) Daylength and temperature in relation to growth and flowering of orchids. Agr Exp Stn Bull 885:3–47

    Google Scholar 

  • Rotor GB, Withner CL (1959) The photoperiodic and temperature response of orchids. In: The Orchids: a Scientific Survey, NY, USA, p 397–416, Ronald Press

    Google Scholar 

  • Sakai WS, Adams C, Braun G (2000) Pseudobulb injected growth regulators as aids for year around production of Hawaiian Dendrobium orchid cutflowers. Acta Hortic 541:215–220

    Article  CAS  Google Scholar 

  • Sakanishi Y, Imanishi H, Ishida G (1980) Effect of temperature on growth and flowering of Phalaenopsis amabilis. Bull Univ Osaka Ser B: Agr Biol 32:1–9

    Google Scholar 

  • Sanford WW (1974) The ecology of orchids. Withner, CL (ed) The Orchids: Scientific Studies. John Wiley and Sons, New York, pp 123–132

    Google Scholar 

  • Sawettalake N, Bunnag S, Wang Y, Shen L, Yu H (2017) DOAP1 promotes flowering in the orchid Dendrobium Chao Praya Smile. Front Plant Sci 8:400

    Article  PubMed  PubMed Central  Google Scholar 

  • Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23:1217–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan TJ (1983) Recent advances in botany, propagation, and physiology of orchids. Hortic Rev 5:279–315

    Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the rosetta stone of flowering time? Science 296:285–289

    Article  CAS  PubMed  Google Scholar 

  • Sinoda K, Suto K, Hara M, Aoki M (1988) Effect of day and night temperature on the flowering of Dendrobium nobile-type cultivars. Bull Natl Res Inst Veg Ornamental Plants Tea Ser A 2279290

    Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18:575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su WR, Chen WS, Koshioka M, Mander LN, Hung LS, Chen WH, Fu YM, Huang KL (2001) Changes in gibberellin levels in the flowering shoot of Phalaenopsis hybrida under high temperature conditions when flower development is blocked. Plant Physiol Biochem 39:45–50

    Article  CAS  Google Scholar 

  • Sun X, Qin Q, Zhang J, Zhang C, Zhou M, Paek KY, Cui Y (2012) Isolation and characterization of the FVE gene of a Doritaenopsis hybrid involved in the regulation of flowering. Plant Growth Regul 68:77–86

    Article  CAS  Google Scholar 

  • Sun Y, Wang G, Li Y, Jiang L, Yang Y, Guan S (2016) De novo transcriptome sequencing and comparative analysis to discover genes related to floral development in Cymbidium faberi Rolfe. SpringerPlus 5:1458–1458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teoh ES (2005) Orchids of Asia. Marshall Cavendish Editions, Singapore, p 367

    Google Scholar 

  • Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357

    Article  CAS  PubMed  Google Scholar 

  • Vaz APA, Figueiredo-Ribeiro RdCL, Kerbauy GB (2004) Photoperiod and temperature effects on in vitro growth and flowering of P. pusilla, an epiphytic orchid. Plant Physiol Biochem 42:411–415

    Article  CAS  PubMed  Google Scholar 

  • Wang YT (1995) Phalaenopsis orchid light requirement during the induction of spiking. HortScience 30:59–61

    Article  Google Scholar 

  • Wang SL, ViswanathKK Tong CG, An HR, Jang S, Chen FC (2019) Floral induction and flower development of orchids. Front Plant Sci 10:1258

    Article  PubMed  PubMed Central  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  CAS  PubMed  Google Scholar 

  • Wee SH (1971) Maturation period of pods and time taken for plant to flower. Malay Orchid Rev 10:42–46

    Google Scholar 

  • Wen Z, Guo W, Li J, Lin H, He C, Liu Y, Zhang Q, Liu W (2017) Comparative transcriptomic analysis of vernalization- and cytokinin-induced floral transition in Dendrobium nobile. Sci Rep 7:45748

    Article  PubMed  PubMed Central  Google Scholar 

  • Went FW (1957) The experimental control of plant. Chron Bot 17:148–152

    Google Scholar 

  • Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    Article  CAS  PubMed  Google Scholar 

  • Weyers JDB, Paterson NW (2001) Plant hormones and the control of physiological processes. New Phytol 152:375–407

    Article  CAS  PubMed  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Williams BS, Williams H (1894) The Orchid Growers’ Manual, 7th ed. Victoria and Paradise Nurseries, London. [Reprinted 1961 by Wheldon and Wesley, Codicote, Hitchin, England, and Hafner Publishing, New York

    Google Scholar 

  • Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100:403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu PH, Chang DCN (2009) The use of N-6-benzyladenine to regulate flowering of Phalaenopsis orchids. HortTechnology 19:200–203

    Article  CAS  Google Scholar 

  • Xiang L, Li X, Qin D, Guo F, Wu C, Miao L, Sun C (2012) Functional analysis of FLOWERING LOCUS T orthologs from spring orchid (Cymbidium goeringii Rchb. f.) that regulates the vegetative to reproductive transition. Plant Physiol Biochem 58:98–105

    Article  CAS  PubMed  Google Scholar 

  • Xu YL, Gage DA, Zeevaart J (1997) Gibberellins and stem growth in Arabidopsis thaliana (Effects of photoperiod on expression of the GA4 and GA5 Loci). Plant Physiol 114:1471–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Wang X, Liu H, Tian Y, Lian J, Yang R, Hao S, Wang X, Yang S, Li Q, Qi S, Kui L, Okpekum M, Ma X, Zhang J, Ding Z, Zhang G, Wang W, Dong Y, Sheng J (2015) The genome of Dendrobium officinale Illuminates the biology of the important traditional Chinese orchid herb. Mol Plant 8:922–934

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Zhu G, Wei Y, Gao J, Liang G, Peng L, Lu C, Jin J (2019) Low-temperature-induced changes in the transcriptome reveal a major role of CgSVP genes in regulating flowering of Cymbidium goeringii. BMC Genom 20:53

    Article  Google Scholar 

  • Yang T, He Y, Niu S, Yan S, Zhang Y (2020) Identification and characterization of the CONSTANS (CO)/CONSTANS-like (COL) genes related to photoperiodic signaling and flowering in tomato. Plant Sci 301:110653

    Article  CAS  PubMed  Google Scholar 

  • Yanovsky MJ, Kay SA (2003) Living by the calendar: how plants know when to flower. Nat Rev Mol Cell Biol 4:265–276

    Article  CAS  PubMed  Google Scholar 

  • Yen, CYT (2008) Effects of nutrient supply and cooling on growth, flower bud differentiation, and propagation of the nobile Dendrobium orchid. MS thesis Texas A&M University College Station, TX

    Google Scholar 

  • Yen CYT, Starman TW, Wang YT, Nie N (2008) Effects of cooling temperature and duration on flowering of the nobile Dendrobium orchid. HortScience 43:1765–1769

    Article  Google Scholar 

  • Yoneda K, Momose H (1990) Effects on flowering of Phalaenopsis caused by spraying growth regulators when transferred to highlands. Bull Coll Agric Vet Med Nihon Univ 47:71–74

    Google Scholar 

  • Yoneda K, Momose H, Kubota S (1991) Effects of daylength and temperature on flowering in juvenile and adult Phalaenopsis plants. J Jpn Soc Hortic Sci 60:651–657

    Article  Google Scholar 

  • Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123:1325–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Yang SH, Goh CJ (2000) DOH1, a class 1 knox gene, is required for maintenance of the basic plant architecture and floral transition in orchid. Plant Cell 12:2143–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaharah H, Saharan HA, Nuraini I (1986) Some experiences with BAP as a flower inducing hormone. Malaysian Orchid Bull 3:31–38

    Google Scholar 

  • Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, Niu SC, Wang JY, Lin YC, Xu Q, Chen LJ, Yoshida K, Fujiwara S, Wang ZW, Zhang YQ, Mitsuda N, Wang M, Liu GH, Pecoraro L, Huang HX, Xiao XJ, Lin M, Wu XY, Wu WL, Chen YY, Chang SB, Sakamoto S, Ohme Takagi M, Yagi M, Zeng SJ, Shen CY, Yeh CM, Luo YB, Tsai WC, Van de Peer Y, Liu ZJ (2017) The Apostasia genome and the evolution of orchids. Nature 549:379–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW, Yoshida K, Zhang LS, Chang SB, Chen F, Shi Y, Su YY, Zhang YQ, Chen LJ, Yin Y, Lin M, Huang H, Deng H, Wang ZW, Zhu SL, Zhao X, Deng C, Niu SC, Huang J, Wang M, Liu GH, Yang HJ, Xiao XJ, Hsiao YY, Wu WL, Chen YY, Mitsuda N, OhmeTakagi M, Luo YB, Van de Peer Y, Liu ZJ (2016) The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci Rep 6:19029

    Google Scholar 

  • Zhang JX, Wu KL, Tian LN, Zeng SJ, Duan J (2011) Cloning and characterization of a novel CONSTANS-like gene from Phalaenopsis hybrida. Acta Physiol Plant 33:409–417

    Article  CAS  Google Scholar 

  • Zhang JX, Wu KL, Zeng SJ, Duan J, Tian LN (2010) Characterization and expression analysis of PhalLFY, a homologue in Phalaenopsis of FLORICAULA/LEAFY genes. Sci Hortic 124:482–489

    Article  CAS  Google Scholar 

  • Zhang J, Wu K, Zeng S, Teixeira da Silva JA, Zhao X, Tian C-E, Xia H, Duan J (2013) Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genom 14:279

    Article  CAS  Google Scholar 

  • Zhou S, Jiang L, Guan S, Gao Y, Gao Q, Wang G, Duan K (2018) Expression profiles of five FT-like genes and functional analysis of PhFT-1 in a Phalaenopsis hybrid. Electron J Biotechnol 31:75–83

    Article  CAS  Google Scholar 

  • Zwanenburg B, Blanco-Ania D (2018) Strigolactones: new plant hormones in the spotlight. J Exp Bot 69:22-5-2218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fure-Chyi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, JZ., Bolaños-Villegas, P., Chen, FC. (2021). Regulation of Flowering in Orchids. In: Chen, FC., Chin, SW. (eds) The Orchid Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-66826-6_6

Download citation

Publish with us

Policies and ethics