Skip to main content
Log in

Azide Coordination to Polyoxometalates: Synthesis of (Bu4N)4.3K0.7[PW11O39FeIIIN3]⋅2.5H2O

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new iron polyoxometalate complex, (Bu4N)4.3K0.7[PW11O39FeIIIN3]⋅2.5H2O (1), has been synthesized in 50% yield by the reaction of K7[PW11O39]⋅14H2O, Fe(NO3)3 ⋅ 9H2O, and NaN3 with subsequent addition of Bu4NBr. The compound has been characterized by elemental analysis, mass spectrometry, and vibrational spectroscopy. The unit cell parameters of 1 have been determined by single-crystal X-ray diffraction: cubic crystal system, space group I\(\bar {1}\)3m, a = 17.82(1) Å, which is typical of salts of Keggin anions with strongly disordered Bu4N+ cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. W. P. Fehlhammer and W. Beck, Z. Anorg. Allg. Chem. 641, 1599 (2015). https://doi.org/10.1002/zaac.201500165

    Article  CAS  Google Scholar 

  2. T. Kemmerich, J. H. Nelson, N. E. Takach, et al., Inorg. Chem. 21, 1226 (1982). https://doi.org/10.1021/ic00133a069

    Article  CAS  Google Scholar 

  3. N. J. Farrer, G. Sharma, R. Sayers, et al., Dalton Trans. 47, 10553 (2018). https://doi.org/10.1039/C7DT04183G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C.-W. Chang and G.-H. Lee, Inorg. Chim. Acta 494, 232 (2019). https://doi.org/10.1016/j.ica.2019.05.031

    Article  CAS  Google Scholar 

  5. Y.-X. Chen, H.-H. Yang, Y.-L. Lin, et al., Dalton Trans. 48, 12996 (2019). https://doi.org/10.1039/C9DT02659B

    Article  CAS  PubMed  Google Scholar 

  6. I. Sánchez-Sordo, J. Díez, E. Lastra, et al., Organometallics 38 1168 (2019). https://doi.org/10.1021/acs.organomet.9b00031

    Article  CAS  Google Scholar 

  7. F. Kröhnke and B. Sander, Z. Anorg. Allg. Chem. 334, 66 (1964). https://doi.org/10.1002/zaac.19643340110

    Article  Google Scholar 

  8. D. R. Tyler and J. E. Crossland, Coord. Chem. Rev. 254, 1883 (2010). https://doi.org/10.1016/j.ccr.2010.01.005

    Article  CAS  Google Scholar 

  9. K. Nakamoto, Coord. Chem. Rev. 226, 153 (2002). https://doi.org/10.1016/S0010-8545(01)00425-8

    Article  CAS  Google Scholar 

  10. J. F. Berry, E. Bill, E. Bothe, et al., Science 312, 1937 (2006). https://doi.org/10.1126/science.1128506

    Article  CAS  PubMed  Google Scholar 

  11. H.-C. Chang, Y.-H. Lin, C. Werl, et al., Angew. Chem., Int. Ed. Engl. 58, 17589 (2021). https://doi.org/10.1002/anie.201908689

    Article  CAS  Google Scholar 

  12. H.-X. Wang, L. Wu, B. Zheng, et al., Angew. Chem., Int. Ed. Engl. 60, 4796 (2021). https://doi.org/10.1002/anie.202014191

    Article  CAS  PubMed  Google Scholar 

  13. M. N. Sokolov, S. A. Adonin, D. A. Mainichev, et al., Inorg. Chem. 52 9675 (2013). https://doi.org/10.1021/ic401492q

    Article  CAS  PubMed  Google Scholar 

  14. X. Wei, M. H. Dickman, and M. T. Pope, J. Am. Chem. Soc. 120, 10254 (1998). https://doi.org/10.1021/ja980993p

    Article  CAS  Google Scholar 

  15. A. A. Mukhacheva, A. L. Gushchin, V. V. Yanshole, et al., Molecules 25, 25081859 (2020). https://doi.org/10.3390/molecules25081859

    Article  CAS  Google Scholar 

  16. R. Contant, Can. J. Chem. 65, 568 (1987). https://doi.org/10.1139/v87-100

    Article  CAS  Google Scholar 

  17. G. M. Sheldrick, SADABS, Program for Empirical X-ray Absorption Correction (Bruker-Nonius, 1990).

    Google Scholar 

  18. G. M. Sheldrick, Acta Crystallogr., Sect. A 71, 3 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  19. G. M. Sheldrick, Acta Crystallogr., Sect. C 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  20. C. B. Hubschle, G. M. Sheldrick, and B. Dittrich, J. Appl. Crystallogr. 44, 1281 (2011). https://doi.org/10.1107/S0021889811043202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. F. Zonnevijlle, G. F. Tourne, and C. M. Tourne, Inorg. Chem. 21, 2751 (1982). https://doi.org/10.1021/ic00137a042

    Article  CAS  Google Scholar 

  22. A. Dolbecq, J.-D. Compain, P. Mialane, et al., Inorg. Chem. 47, 3371 (2008). https://doi.org/10.1021/ic7024186

    Article  CAS  PubMed  Google Scholar 

  23. Z.-S. Wang, Z.-M. Zhang, X.-B. Han, et al., Inorg. Chem. Commun. 20, 196 (2012). https://doi.org/10.1016/j.inoche.2012.03.007

    Article  CAS  Google Scholar 

  24. S. Tian, Y. Li, J. Zhao, et al., Inorg. Chem. Commun. 33, 99 (2013). https://doi.org/10.1016/j.inoche.2013.04.004

    Article  CAS  Google Scholar 

  25. D. L. Long, C. Streb, Y. F. Song, et al., J. Am. Chem. Soc. 130 1830 (2008). https://doi.org/10.1021/ja075940z

    Article  CAS  PubMed  Google Scholar 

  26. J. Yan, D.-L. Long, E. F. Wilson, et al., Angew. Chem., Int. Ed. Engl. 48, 4376 (2009). https://doi.org/10.1002/anie.200806343

    Article  CAS  PubMed  Google Scholar 

  27. H. N. Miras, E. F. Wilson, and L. Cronin, Chem. Commun. 11, 1297 (2009). https://doi.org/10.1039/B819534J

    Article  Google Scholar 

  28. M. J. Hülsey, G. Sun, P. Sautet, et al., Angew. Chem., Int. Ed. Engl. 60, 4764 (2021). https://doi.org/10.1002/anie.202011632

    Article  CAS  PubMed  Google Scholar 

  29. G. M. Maksimov, G. N. Kustova, K. I. Matveev, et al., Koord. Khim. 15, 788 (1989).

    CAS  Google Scholar 

  30. L. Kuznetsova, L. G. Detusheva, M. A. Fedotov, et al., J. Mol. Catal. A: Chem. 111, 81 (1996). https://doi.org/10.1016/1381-1169(96)00207-5

    Article  CAS  Google Scholar 

  31. C. Pichon, A. Dolbecq, P. Mialane, et al., Chem. Eur. J. 14, 3189 (2008). https://doi.org/10.1002/chem.200700896

    Article  CAS  PubMed  Google Scholar 

  32. J. A. F. Gamelas, M. R. Soares, A. Ferreira, et al., Inorg. Chim. Acta 342, 16 (2003). https://doi.org/10.1016/S0020-1693(02)01151-9

    Article  CAS  Google Scholar 

  33. J. A. Gamelas, A. S. F. Couto, M. C. N. Trovao, et al., Thermochim. Acta 326, 165 (1999). https://doi.org/10.1016/S0040-6031(98)00597-8

    Article  CAS  Google Scholar 

  34. S. Neya, A. Takahashi, H. Ode, et al., Eur. J. Inorg. Chem. 2007, 3188 (2007). https://doi.org/10.1002/ejic.200601183

    Article  CAS  Google Scholar 

  35. W. Huang, L. Todaro, G. P. A. Yap, et al., J. Am. Chem. Soc. 126, 11564 (2004). https://doi.org/10.1021/ja0475499

    Article  CAS  PubMed  Google Scholar 

  36. P. Klonowski, J. C. Goloboy, F. J. Uribe-Romo, et al., Inorg. Chem. 53, 13239 (2014). https://doi.org/10.1021/ic502617k

    Article  CAS  PubMed  Google Scholar 

  37. M. A. Porai-Koshits and L. O. Atovmyan, Itogi Nauki Tekh., Ser. Kristallokhim. (VINITI, Moscow, 1985) [in Russian].

    Google Scholar 

  38. T. Ueda, K. Kodani, H. Ota, et al., Inorg. Chem. 56, 3990 (2017). https://doi.org/10.1021/acs.inorgchem.6b03046

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Anyushin for help in carrying out the experiments, C. Vicente (Jaime I University Center for Collective Use) for obtaining mass spectrometric data, and A.L. Gushchin for conducting the electrochemical study, as well as the Shared Facility Center of the Institute of Inorganic Chemistry, SB RAS, for performing single crystal X-ray diffraction and DTA.

Funding

The work was supported by the Ministry of Science and higher Education of the Russian Federation, project no. 121031700313-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Korenev.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korenev, V.S., Abramov, P.A. & Sokolov, M.N. Azide Coordination to Polyoxometalates: Synthesis of (Bu4N)4.3K0.7[PW11O39FeIIIN3]⋅2.5H2O. Russ. J. Inorg. Chem. 67, 1763–1768 (2022). https://doi.org/10.1134/S0036023622600897

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622600897

Keywords:

Navigation