Skip to main content
Log in

STUDY OF THE STRUCTURE OF Ag(I) SOLVATE COMPLEXES BY MEANS OF POLYOXOMETALATES: CRYSTALLIZATION FROM THE AgNO3/(Bu4N)4[β-Mo8O26]/DMF SYSTEM. REVIEW

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The review summarizes information about the known Ag+ solvate complexes isolated and structurally characterized as adducts and/or salts with polyoxometalates. The AgNO3/(Bu4N)4[β-Mo8O26]/N,N-dimethylformamide (DMF) system along with the complexes isolated for the first time are considered in detail: (Bu4N)4[Ag2(NO3)2Mo8O26]; (Bu4N)2n[Ag1.8(MoO2)0.2Mo8O26]n; (Bu4N)4[Ag2(DMF)4Mo8O26] [Ag2(DMF)2Mo8O26]; (Bu4N)4[Ag2(DMF)4Mo8O26][Ag2(DMF)2Mo8O26]·0.25DMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. S. Medici, M. Peana, G. Crisponi, V. M. Nurchi, J. I. Lachowicz, M. Remelli, and M. A. Zoroddu. Coord. Chem. Rev., 2016, 327/328, 349-359. https://doi.org/10.1016/j.ccr.2016.05.015

    Article  CAS  Google Scholar 

  2. X. Liang, S. Luan, Z. Yin, M. He, C. He, L. Yin, Y. Zou, Z. Yuan, L. Li, X. Song, C. Lv, and W. Zhang. Eur. J. Med. Chem., 2018, 157, 62-80. https://doi.org/10.1016/j.ejmech.2018.07.057

    Article  CAS  Google Scholar 

  3. L. Radko, S. Stypuła-Trębas, A. Posyniak, D. Żyro, and J. Ochocki. Molecules, 2019, 24(10), 1949. https://doi.org/10.3390/molecules24101949

    Article  CAS  Google Scholar 

  4. X.-F. Zhang, Z.-G. Liu, W. Shen, and S. Gurunathan. Int. J. Mol. Sci., 2016, 17(9), 1534. https://doi.org/10.3390/ijms17091534

    Article  CAS  Google Scholar 

  5. B. Calderón-Jiménez, M. E. Johnson, A. R. Montoro Bustos, K. E. Murphy, M. R. Winchester, and J. R. Vega Baudrit. Front. Chem., 2017, 5. https://doi.org/10.3389/fchem.2017.00006

    Article  Google Scholar 

  6. K. S. Siddiqi, A. Husen, and R. A. K. Rao. J. Nanobiotechnol., 2018, 16(1), 14. https://doi.org/10.1186/s12951-018-0334-5

    Article  CAS  Google Scholar 

  7. H. M. Fahmy, A. M. Mosleh, A. A. Elghany, E. Shams-Eldin, E. S. Abu Serea, S. A. Ali, and A. E. Shalan. RSC Adv., 2019, 9(35), 20118-20136. https://doi.org/10.1039/c9ra02907a

    Article  CAS  Google Scholar 

  8. P. Hota, S. Bose, D. Dinda, P. Das, U. K. Ghorai, S. Bag, S. Mondal, and S. K. Saha. ACS Omega, 2018, 3(12), 17070-17076. https://doi.org/10.1021/acsomega.8b02223

    Article  CAS  Google Scholar 

  9. S. I. Sadovnikov, E. A. Kozlova, E. Y. Gerasimov, and A. A. Rempel. Catal. Commun., 2017, 100, 178-182. https://doi.org/10.1016/j.catcom.2017.07.004

    Article  CAS  Google Scholar 

  10. V. Shokhen, Y. Kostikov, I. Borge-Durán, Y. Gershinsky, I. Grinberg, G. D. Nessim, and D. Zitoun. ACS Appl. Energy Mater., 2019, 2(1), 788-796. https://doi.org/10.1021/acsaem.8b01844

    Article  CAS  Google Scholar 

  11. A. V. Artemev, I. Y. Bagryanskaya, E. P. Doronina, P. M. Tolstoy, A. L. Gushchin, M. I. Rakhmanova, A. Y. Ivanov, and A. O. Suturina. Dalton Trans., 2017, 46(37), 12425-12429. https://doi.org/10.1039/c7dt02597a

    Article  CAS  Google Scholar 

  12. A. V. Artemev, M. R. Ryzhikov, A. S. Berezin, I. E. Kolesnikov, D. G. Samsonenko, and I. Y. Bagryanskaya. Inorg. Chem. Front., 2019, 6(10), 2855-2864. https://doi.org/10.1039/c9qi00657e

    Article  CAS  Google Scholar 

  13. A. V. Artemev, M. Z. Shafikov, A. Schinabeck, O. V. Antonova, A. S. Berezin, I. Y. Bagryanskaya, P. E. Plusnin, and H. Yersin. Inorg. Chem. Front., 2019, 6(11), 3168-3176. https://doi.org/10.1039/c9qi01069f

    Article  CAS  Google Scholar 

  14. A. V. Artemev, M. P. Davydova, A. S. Berezin, and D. G. Samsonenko. Inorganics, 2020, 8(9), 46. https://doi.org/10.3390/inorganics8090046

    Article  CAS  Google Scholar 

  15. M. I. Rogovoy, A. S. Berezin, D. G. Samsonenko, and A. V. Artemev. Inorg. Chem., 2021, 60(9), 6680-6687. https://doi.org/10.1021/acs.inorgchem.1c00480

    Article  CAS  Google Scholar 

  16. M. I. Rogovoy, T. S. Frolova, D. G. Samsonenko, A. S. Berezin, I. Y. Bagryanskaya, N. A. Nedolya, O. A. Tarasova, V. P. Fedin, and A. V. Artemev. Eur. J. Inorg. Chem., 2020, 2020(17), 1635-1644. https://doi.org/10.1002/ejic.202000109

    Article  CAS  Google Scholar 

  17. M. O. Awaleh, A. Badia, F. Brisse, and X.-H. Bu. Inorg. Chem., 2006, 45(4), 1560-1574. https://doi.org/10.1021/ic051357c

    Article  CAS  Google Scholar 

  18. A. S. Ovsyannikov, S. Ferlay, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, N. Kyritsakas, and M. W. Hosseini. Russ. Chem. Bull., 2015, 64(8), 1955-1962. https://doi.org/10.1007/s11172-015-1099-8

    Article  CAS  Google Scholar 

  19. S. Azizzadeh, V. Nobakht, L. Carlucci, and D. M. Proserpio. Polyhedron, 2017, 130, 58-66. https://doi.org/10.1016/j.poly.2017.03.048

    Article  CAS  Google Scholar 

  20. M. Z. Shafikov, R. Czerwieniec, and H. Yersin. Dalton Trans., 2019, 48(8), 2802-2806. https://doi.org/10.1039/c8dt04078h

    Article  CAS  Google Scholar 

  21. O. Fuhr, S. Dehnen, and D. Fenske. Chem. Soc. Rev., 2013, 42(4), 1871-1906. https://doi.org/10.1039/c2cs35252d

    Article  CAS  Google Scholar 

  22. Q. Zhou, S. Kaappa, S. Malola, H. Lu, D. Guan, Y. Li, H. Wang, Z. Xie, Z. Ma, H. Häkkinen, N. Zheng, X. Yang, and L. Zheng. Nat. Commun., 2018, 9(1), 2948. https://doi.org/10.1038/s41467-018-05372-5

    Article  CAS  Google Scholar 

  23. X. Kang, Y. Li, M. Zhu, and R. Jin. Chem. Soc. Rev., 2020, 49(17), 6443-6514. https://doi.org/10.1039/c9cs00633h

    Article  CAS  Google Scholar 

  24. Z. Wang, R. K. Gupta, G. Luo, and D. Sun. Chem. Rec., 2020, 20(5), 389-402. https://doi.org/10.1002/tcr.201900049

    Article  CAS  Google Scholar 

  25. A. V. Chupina, V. V. Yanshole, V. S. Sulyaeva, V. V. Kokovkin, P. A. Abramov, and M. N. Sokolov. Dalton Trans., 2022, 51(2), 705-714. https://doi.org/10.1039/d1dt02398e

    Article  CAS  Google Scholar 

  26. K. Nilsson, Å. Oskarsson, J. Songstad, R. Sillanpää, L. Fernholt, and C. Rømming. Acta Chem. Scand., 1984, 38a, 79-85. https://doi.org/10.3891/acta.chem.scand.38a-0079

    Article  Google Scholar 

  27. C.-C. Dörtbudak, K. Lux, and A. Kornath. Z. Naturforsch. B, 2014, 69(3), 373-375. https://doi.org/10.5560/znb.2014-3287

    Article  Google Scholar 

  28. D. V. Peryshkov and S. H. Strauss. Inorg. Chem., 2017, 56(7), 4072-4083. https://doi.org/10.1021/acs.inorgchem.7b00051

    Article  CAS  Google Scholar 

  29. D.-B. Dang, H. Gao, Y. Bai, X.-F. Hu, F. Yang, Y. Chen, and J.-Y. Niu. Inorg. Chem. Commun., 2010, 13(1), 37-41. https://doi.org/10.1016/j.inoche.2009.10.010

    Article  CAS  Google Scholar 

  30. T. McGlone, J. Thiel, C. Streb, D.-L. Long, and L. Cronin. Chem. Commun., 2012, 48(3), 359-361. https://doi.org/10.1039/c1cc15879a

    Article  CAS  Google Scholar 

  31. J. T. Rhule, W. A. Neiwert, K. I. Hardcastle, B. T. Do, and C. L. Hill. J. Am. Chem. Soc., 2001, 123(48), 12101/12102. https://doi.org/10.1021/ja015812p

    Article  CAS  Google Scholar 

  32. T. McGlone, C. Streb, D.-L. Long, and L. Cronin. Adv. Mater., 2010, 22(38), 4275-4279. https://doi.org/10.1002/adma.201001398

    Article  CAS  Google Scholar 

  33. C. Streb, C. Ritchie, D.-L. Long, P. Kögerler, and L. Cronin. Angew. Chem., Int. Ed., 2007, 46(40), 7579-7582. https://doi.org/10.1002/anie.200702698

    Article  CAS  Google Scholar 

  34. A. A. Shmakova, A. S. Berezin, P. A. Abramov, and M. N. Sokolov. Inorg. Chem., 2020, 59(3), 1853-1862. https://doi.org/10.1021/acs.inorgchem.9b03064

    Article  CAS  Google Scholar 

  35. V. Kulikov and G. Meyer. New J. Chem., 2014, 38(8), 3408. https://doi.org/10.1039/c4nj00172a

    Article  CAS  Google Scholar 

  36. V. Kulikov and G. Meyer. Crystals, 2014, 4(1), 64-73. https://doi.org/10.3390/cryst4010064

    Article  CAS  Google Scholar 

  37. V. Kulikov and G. Meyer. Z. Anorg. Allg. Chem., 2014, 640(1), 19-22. https://doi.org/10.1002/zaac.201300391

    Article  CAS  Google Scholar 

  38. A. V. Chupina, V. Shayapov, A. S. Novikov, V. V. Volchek, E. Benassi, P. A. Abramov, and M. N. Sokolov. Dalton Trans., 2020, 49(5), 1522-1530. https://doi.org/10.1039/c9dt04043a

    Article  CAS  Google Scholar 

  39. P. A. Abramov, V. Y. Komarov, D. A. Pischur, V. S. Sulyaeva, E. Benassi, and M. N. Sokolov. CrystEngComm, 2021, 23(48), 8527-8537. https://doi.org/10.1039/d1ce01152a

    Article  CAS  Google Scholar 

  40. Q.-M. Wang and T. C. W. Mak. Chem. – Eur. J., 2003, 9(1), 43-50. https://doi.org/10.1002/chem.200390002

    Article  CAS  Google Scholar 

  41. V. S. Pantyukhina, V. V. Volchek, V. Y. Komarov, I. V. Korolkov, V. V. Kokovkin, N. B. Kompankov, P. A. Abramov, and M. N. Sokolov. New J. Chem., 2021, 45(15), 6745-6752. https://doi.org/10.1039/d1nj00421b

    Article  CAS  Google Scholar 

  42. W. G. Klemperer and W. Shum. J. Am. Chem. Soc., 1976, 98(25), 8291-8293. https://doi.org/10.1021/ja00441a083

    Article  CAS  Google Scholar 

  43. C. J. Besecker, W. G. Klemperer, D. J. Maltbie, and D. A. Wright. Inorg. Chem., 1985, 24(7), 1027-1032. https://doi.org/10.1021/ic00201a013

    Article  CAS  Google Scholar 

  44. N. Alam and C. Feldmann. Solid State Sci., 2010, 12(4), 471-475. https://doi.org/10.1016/j.solidstatesciences.2009.12.010

    Article  CAS  Google Scholar 

  45. P. Bolle, H. Serier-Brault, A. Boulmier, M. Puget, C. Menet, O. Oms, J. Marrot, P. Mialane, A. Dolbecq, and R. Dessapt. Cryst. Growth Des., 2018, 18(12), 7426-7434. https://doi.org/10.1021/acs.cgd.8b01114

    Article  CAS  Google Scholar 

  46. Y. Wang, L.-M. Wang, Y.-Y. Hu, L.-N. Xiao, D.-C. Zhao, H.-Y. Guo, Z.-M. Gao, T.-G. Wang, X.-B. Cui, and J.-Q. Xu. Polyhedron, 2014, 83, 2-9. https://doi.org/10.1016/j.poly.2014.03.030

    Article  CAS  Google Scholar 

  47. N. N. Harmalkar, B. R. Srinivasan, and S. N. Dhuri. Z. Naturforsch. B, 2022, 77(4/5), 245-252. https://doi.org/10.1515/znb-2022-0005

    Article  CAS  Google Scholar 

  48. A. V. Chupina, A. A. Mukhacheva, P. A. Abramov, and M. N. Sokolov. J. Struct. Chem., 2020, 61(2), 299-308. https://doi.org/10.1134/s0022476620020158

    Article  CAS  Google Scholar 

  49. H. Abbas, A. L. Pickering, D.-L. Long, P. Kögerler, and L. Cronin. Chem. – Eur. J., 2005, 11(4), 1071-1078. https://doi.org/10.1002/chem.200401088

    Article  CAS  Google Scholar 

  50. V. I. Komlyagina, N. F. Romashev, V. V. Kokovkin, A. L. Gushchin, E. Benassi, M. N. Sokolov, and P. A. Abramov. Molecules, 2022, 27(20), 6961. https://doi.org/10.3390/molecules27206961

    Article  CAS  Google Scholar 

  51. Inorganic Syntheses, Vol. 27 / Ed. A. P. Ginsberg. New York: Wiley, 1990. https://doi.org/10.1002/9780470132586

    Book  Google Scholar 

  52. G. M. Sheldrick. SADABS: a program for scaling and correction of area detector data. Göttingen, Germany: University of Göttingen, 1996.

  53. G. M. Sheldrick. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  54. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  55. C. B. Hübschle, G. M. Sheldrick, and B. Dittrich. J. Appl. Crystallogr., 2011, 44, 1281-1284. https://doi.org/10.1107/S0021889811043202

    Article  Google Scholar 

Download references

Funding

The work was supported by the grant of the President of the Russian Federation (No. MD-396.2021.1.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Abramov.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 12, 103726.https://doi.org/10.26902/JSC_id103726

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramov, P.A. STUDY OF THE STRUCTURE OF Ag(I) SOLVATE COMPLEXES BY MEANS OF POLYOXOMETALATES: CRYSTALLIZATION FROM THE AgNO3/(Bu4N)4[β-Mo8O26]/DMF SYSTEM. REVIEW. J Struct Chem 63, 2068–2082 (2022). https://doi.org/10.1134/S0022476622120186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622120186

Keywords

Navigation