Skip to main content
Log in

Microstructure and Work Hardening Behavior of Micro-plasma Arc Welded AISI 316L Sheet Joint

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aim of this research is to investigate the microstructural changes and work hardening behavior of AISI 316L 0.5-mm-thick sheet due to micro-plasma arc welding. AISI 316L similar sheets were welded in single-pass square butt joint configuration. The microstructure in the fusion zone typically contains a variety of complex δ-ferrite-austenitic structure, which significantly increased hardness value compared to the base material because of rapid solidification of the weld pool. Systematic tensile test was performed to investigate strain rate sensitivity of the welded joint under quasi-static loading conditions. The multistage work hardening behavior was determined by Kocks–Mecking (K–M) model and differential Crussard–Jaoul analysis. In both the cases, stage III work hardening behavior and stage IV work hardening behavior were observed. The stress–strain curves of welded specimen at different strain rates were analyzed in terms of Hollomon, Ludwik and Swift equations to determine work hardening exponent values. The welded joints were ruptured in the transition zone of heat affected and fusion zones. The fractographic observation exhibited variation in dimple and void density over strain rate from 0.0001 to 0.0015 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. W.S. Park, S.W. Yoo, M.H. Kim, and J.M. Lee, Strain-Rate Effects on the Mechanical Behavior of the AISI, 300 Series of Austenitic Stainless Steel Under Cryogenic Environments, Mater. Des., 2010, 31(8), p 3630–3640

    Article  Google Scholar 

  2. C. Gaudin and X. Feaugas, Cyclic Creep Process in AISI, 316L Stainless Steel in Terms of Dislocation Patterns and Internal Stresses, Acta Mater., 2004, 52, p 3097–3110

    Article  Google Scholar 

  3. L.I. Ruipeng, Y. Zhang, and L.-W. Tong, Numerical Study of the Cyclic Load Behavior of AISI 316L Stainless Steel Shear Links for Seismic Fuse Device, Front. Struct. Civ. Eng., 2014, 8(4), p 414–426

    Article  Google Scholar 

  4. K. Danial, M. Amir, and M. Javad, Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2014, 45, p 4423–4442

    Article  Google Scholar 

  5. C.C. Silva, H.C. de Miranda, H.B. de Sant’Ana, and J.P. Farias, Microstructure, Hardness and Petroleum Corrosion Evaluation of 316L/AWS E309MoL-16 Weld Metal, Mater. Charact., 2009, 60(4), p 346–352

    Article  Google Scholar 

  6. R. Sánchez-Tovar, M.T. Montañés, and J. García-Antón, Effect of the Micro-plasma Arc Welding Technique on the Microstructure and Pitting Corrosion of AISI, 316L Stainless Steels in Heavy LiBr Brines, Corros. Sci., 2011, 53(8), p 2598–2610

    Article  Google Scholar 

  7. C. Garcia, F. Martin, P. De Tiedra, Y. Blanco, and M. Lopez, Pitting Corrosion of Welded Joints of Austenitic Stainless Steels Studied by Using an Electrochemical Minicell, Corros. Sci., 2008, 50, p 1184–1194

    Article  Google Scholar 

  8. M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, and A. Saatchi, Effect of TIG Welding on Corrosion Behavior of 316L Stainless Steel, Mater. Lett., 2007, 61(11–12), p 2343–2346

    Article  Google Scholar 

  9. Y.H. Kim et al., The Effect of Sigma Phases Formation Depending on Cr/Ni Equivalent Ratio in AISI, 316L Weldments, Mater. Des., 2011, 32(1), p 330–336

    Article  Google Scholar 

  10. S.M. Tabatabaeipour and F. Honarvar, A Comparative Evaluation of Ultrasonic Testing of AISI, 316L Welds Made by Shielded Metal Arc Welding and Gas Tungsten Arc Welding Processes, J. Mater. Process. Technol., 2010, 210(8), p 1043–1050

    Article  Google Scholar 

  11. V.A. Ventrella, J.R. Berretta, and W. De Rossi, Pulsed Nd:YAG Laser Seam Welding of AISI, 316L Stainless Steel Thin Foils, J. Mater. Process. Technol., 2010, 210(14), p 1838–1843

    Article  Google Scholar 

  12. A. Kobayashi, New Applied Technology of Plasma Heat Sources, Weld. Int., 1990, 4(4), p 276–282

    Article  Google Scholar 

  13. K.H. Tseng, S.T. Hsieh, and C.C. Tseng, Effect of Process Parameters of Micro-plasma Arc Welding on Morphology and Quality in Stainless Steel Edge Joint Welds, Sci. Technol. Weld. Join., 2003, 8(6), p 423–430

    Article  Google Scholar 

  14. J.C. Metcalfe and M.B.C. Quigley, Heat transfer in plasma-arc welding, Weld. Res. Abroad, 1975, 12, p 99–104

    Google Scholar 

  15. C.S. Wu, L. Wang, W.J. Ren, and X.Y. Zhang, Plasma Arc Welding: Process, Sensing, Control and Modeling, J. Manuf. Process., 2014, 16(1), p 74–85

    Article  Google Scholar 

  16. K.S. Prasad, C.S. Rao, and D.N. Rao, Study on Weld Quality Characteristics of Micro Plasma Arc Welded Austenitic Stainless Steels, Procedia Eng., 2014, 97, p 752–757

    Article  Google Scholar 

  17. K. Siva, C. Srinivasa, and D. Nageswara, An Investigation on Weld Quality Characteristics of Pulsed Current Micro Plasma Arc Welded Austenitic Stainless Steels, Int. J. Eng. Sci. Technol., 2012, 4(2), p 159–168

    Google Scholar 

  18. S.M. Chowdhury et al., Tensile Properties and Strain-Hardening Behavior of Double-Sided Arc Welded and Friction Stir Welded AZ31B Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(12), p 2951–2961

    Article  Google Scholar 

  19. Q. Jia, W. Guo, P. Peng, M. Li, Y. Zhu, and G. Zou, Microstructure- and Strain Rate-Dependent Tensile Behavior of Fiber Laser-Welded DP980 Steel Joint, J. Mater. Eng. Perform., 2016, 25(2), p 668–676

    Article  Google Scholar 

  20. H. Ashrafi, M. Shamanian, R. Emadi, and N. Saeidi, Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels, J. Mater. Eng. Perform., 2017, 26(3), p 1414–1423

    Article  Google Scholar 

  21. M.G. Stout and P.S. Follansbee, Strain Rate Sensitivity, Strain Hardening, and Yield Behavior of 304L Stainless Steel, J. Eng. Mater. Technol., 1986, 108, p 344–353

    Article  Google Scholar 

  22. P.S. Follansbee, High strain-rate deformation of FCC metals and alloys, Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, Vol 52, Mechanical Engineering, Marcel Dekker Inc., New York, 1986, p 451–479

  23. J.A. Lichtenfeld, C.J. Van Tyne, and M.C. Mataya, Effect of Strain Rate on Stress–Strain Behavior of Alloy 309 and 304L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2006, 37(1), p 147–161

    Article  Google Scholar 

  24. A. Kundu and P.C. Chakraborti, Effect of Strain Rate on Quasistatic Tensile Flow Behaviour of Solution Annealed 304 Austenitic Stainless Steel at Room Temperature, J. Mater. Sci., 2010, 45(20), p 5482–5489

    Article  Google Scholar 

  25. C. Garion, B. Skoczeń, and S. Sgobba, Constitutive Modelling and Identification of Parameters of the Plastic Strain-Induced Martensitic Transformation in 316L Stainless Steel at Cryogenic Temperatures, Int. J. Plast., 2006, 22(7), p 1234–1264

    Article  Google Scholar 

  26. N. Solomon and I. Solomon, Deformation Induced Martensite in AISI, 316 Stainless Steel, Rev. Metal., 2010, 46(2), p 121–128

    Article  Google Scholar 

  27. K. Spencer, M. Véron, K. Yu-Zhang, and J.D. Embury, The Strain Induced Martensite Transformation in Austenitic Stainless Steels: Part 1—Influence of Temperature and Strain History, Mater. Sci. Technol., 2009, 25(1), p 7–17

    Article  Google Scholar 

  28. K.K. Singh, Strain Hardening Behaviour of 316L Austenitic Stainless Steel, Mater. Sci. Technol., 2004, 20(9), p 1134–1142

    Article  Google Scholar 

  29. G. Angella, Strain Hardening Analysis of an Austenitic Stainless Steel at High Temperatures Based on the One-Parameter Model, Mater. Sci. Eng. A, 2012, 532, p 381–391

    Article  Google Scholar 

  30. A. Soussan and S. Degallaix, Work-Hardening Behaviour of Nitrogen-Alloyed Austenitic Stainless Steels, Mater. Sci. Eng. A, 1991, 142, p 169–176

    Article  Google Scholar 

  31. K.G. Samuel and P. Rodriguez, On Power-Law Type Relationships and the Ludwigson Explanation for the Stress–Strain Behaviour of AISI, 316 Stainless Steel, J. Mater. Sci., 2005, 40(21), p 5727–5731

    Article  Google Scholar 

  32. M. Zhu and F. Xuan, Effect of Microstructure on Strain Hardening and Strength Distributions Along a Cr–Ni–Mo–V Steel Welded Joint, Mater. Des., 2015, 65, p 707–715

    Article  Google Scholar 

  33. H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Metall., 1981, 29(11), p 1865–1875

    Article  Google Scholar 

  34. B.P. Kashyap and K. Tangri, On the Hall–Petch Relationship and Substructural Evolution in Type 316L Stainless Steel, Acta Metall. Mater., 1995, 43(11), p 3971–3981

    Article  Google Scholar 

  35. H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1(1), p 1–18

    Article  Google Scholar 

  36. M. Umemoto, Z.G. Liu, S. Sugimoto, and K. Tsuchiya, Tensile Stress-Strain Analysis of Single-Structure Steels, Metall. Mater. Trans. A, 2000, 31A(July), p 1785–1794

    Article  Google Scholar 

  37. ASTM Standard E 407, Standard Practice for Microetching Metals and Alloys. ASTM International, 1999, 11(November), p 1–21.

  38. ASTM Standard E8/E8m, Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, 2008, p 743–746.

  39. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, Boston, 1986

    Google Scholar 

  40. J. Elmer, S. Allen, and T. Eagar, Microstructural Development During Solidification of Stainless Steel Alloys, Metall. Trans. A, 1989, 20(10), p 2117–2131

    Article  Google Scholar 

  41. T.P.S. Gill, M. Vijayalakshmi, J.B. Gnanamoorthy, and K.A. Padmanabhan, Transformation of Delta-Ferrite During the Postweld Heat Treatment of Type 316L Stainless Steel Weld Metal. Weld. J. Suppl., 1986, 65(5), p 122–128

    Google Scholar 

  42. J.A. Brooks and A.W. Thompson, Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds, Int. Mater. Rev., 1991, 36(1), p 16–44

    Article  Google Scholar 

  43. ASTM Int, ASTM E384: Standard Test Method for Knoop and Vickers Hardness of Materials. ASTM Stand, 2012, p 1–43.

  44. Y. Liu, D. Dong, L. Wang, X. Chu, P. Wang, and M. Jin, Strain Rate Dependent Deformation and Failure Behavior of Laser Welded DP780 Steel Joint Under Dynamic Tensile Loading, Mater. Sci. Eng. A, 2015, 627, p 296–305

    Article  Google Scholar 

  45. P. Haušild, V. Davydov, J. Drahokoupil, M. Landa, and P. Pilvin, Characterization of Strain-Induced Martensitic Transformation in a Metastable Austenitic Stainless Steel, Mater. Des., 2010, 31(4), p 1821–1827

    Article  Google Scholar 

  46. N. Afrin, D.L. Chen, X. Cao, and M. Jahazi, Strain Hardening Behavior of a Friction Stir Welded Magnesium Alloy, Scr. Mater., 2007, 57(11), p 1004–1007

    Article  Google Scholar 

  47. J. Luo, Z. Mei, W. Tian, and Z. Wang, Diminishing of Work Hardening in Electroformed Polycrystalline Copper with Nano-sized and uf-Sized Twins, Mater. Sci. Eng. A, 2006, 441(1–2), p 282–290

    Article  Google Scholar 

  48. W.D. Callister and D.G. Rethwisch, Materials Science and Engineering—An Introduction, 9th ed., John Wiley & Sons, Inc., Hoboken, 2014

    Google Scholar 

  49. G. Sharma, D.K. Dwivedi, and P.K. Jain, Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel, J. Mater. Eng. Perform., 2017, 26(12), p 5997–6005

    Article  Google Scholar 

  50. J. Cuddy and M. Nabil Bassim, Study of Dislocation Cell Structures from Uniaxial Deformation of AISI, 4340 Steel, Mater. Sci. Eng. A, 1989, 113, p 421–429

    Article  Google Scholar 

  51. B.K. Choudhary, J. Christopher, and E.I. Samuel, Applicability of Kocks–Mecking Approach for Tensile Work Hardening in P9 Steel, Mater. Sci. Technol., 2012, 28(6), p 644–650

    Article  Google Scholar 

  52. Y. Il Son, Y.K. Lee, K.T. Park, C.S. Lee, and D.H. Shin, Ultrafine Grained Ferrite-Martensite Dual Phase Steels Fabricated Via Equal Channel Angular Pressing: Microstructure and Tensile Properties, Acta Mater., 2005, 53(11), p 3125–3134

    Article  Google Scholar 

  53. X.Z. Lin and D.L. Chen, Strain Hardening and Strain-Rate Sensitivity of an Extruded Magnesium Alloy, J. Mater. Eng. Perform., 2008, 17(6), p 894–901

    Article  Google Scholar 

  54. B.K. Jha, R. Avtar, V.S. Dwivedi, and V. Ramaswamy, Applicability of Modified Crussard–Jaoul Analysis on the Deformation Behaviour of Dual-Phase Steels, J. Mater. Sci. Lett., 1987, 6(8), p 891–893

    Article  Google Scholar 

  55. N. Farabi, D.L. Chen, and Y. Zhou, Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints, J. Mater. Eng. Perform., 2012, 21(2), p 222–230

    Article  Google Scholar 

  56. A. Das, Contribution of Deformation-Induced Martensite to Fracture Appearance of Austenitic Stainless Steel, Mater. Sci. Technol. (United Kingdom), 2016, 32(13), p 1366–1373

    Article  Google Scholar 

Download references

Acknowledgments

This research work is supported by the Department of Mechanical Engineering and Central Instruments Facility, IIT Guwahati, by providing experimental and testing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhomay Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, D., Pal, S. Microstructure and Work Hardening Behavior of Micro-plasma Arc Welded AISI 316L Sheet Joint. J. of Materi Eng and Perform 28, 2588–2599 (2019). https://doi.org/10.1007/s11665-019-04064-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04064-5

Keywords

Navigation