

Invisible Traces in Pixels and Bits

Mín Wu

Media and Security Team (MAST) ECE Department / UMIACS University of Maryland, College Park

http://www.ece.umd.edu/~minwu/research.html

Include joint work with Hongmei Gou, Shan He, K.J. Ray Liu, Christine McKay, Ashwin Swaminathan, and Avinash Varna.

THE A. JAMES CLARK SCHOOL of ENGINEERING

UNIVERSITY OF MARYLANI

Multimedia Security and Forensics: Where Sherlock Holmes Meets Signal Processing

- Ensure content to be used by authorized users for authorized purpose
- To reconstruct what have happened to the content and answer who has done what, when and how.
- Cross-disciplinary approaches involving signal processing, machine learning, communications, cryptography ...

Many Forms of "Digital Fingerprints"

Many types of fingerprints for multimedia protection & management

I. C. E.

Embedded Fingerprint

Embed unique ID/signal as digital fingerprints to track individual copy and trace unauthorized use

Content-based Fingerprint

Compact content signature for content identification, and also useful for watermarking and content authentication

Intrinsic Fingerprint

Examine inherent traces left on multimedia by device or processing -Provide non-intrusive forensics to determine origin, integrity, etc.

Collusion-Resistant Fingerprinting: Examples

Road Map on Media Fingerprinting Research

When No Proactive Protections are available ...

Can we answer many forensic questions?

- On the integrity, origin, and provenance of increasingly popular audio/visual data
- Arise from homeland security, law enforcement, medical, and financial, and IT applications
 - What type of sensor was used?
 - Which camera brand took this picture? What model?
 - What processing has been done?
 - Has it been tampered? manipulated?
 - What imaging technologies were used?

Min Wu (UMD): Multimedia Forensics - Fall 2009

Many Forms of "Digital Fingerprints"

Many types of fingerprints for multimedia protection & management

I. C. E.

Embedded Fingerprint

Embed unique ID/signal as digital fingerprints to track individual copy and trace unauthorized use

Content-based Fingerprint

Compact content signature for content identification, and also useful for watermarking and content authentication

Intrinsic Fingerprint

Examine inherent traces left on multimedia by device or processing – Provide non-intrusive forensics to determine origin, integrity, etc.

Exploit Intrinsic Fingerprints via Component Forensics

- Break down the info. processing chain into individual components
- Identify algorithms and parameters employed in major components of a digital device or processing system
- Concept extensible to general info processing chain beyond multimedia

 E.g. forensics on communication channels, etc.

Types of Component Forensics

Intrusive forensics

- Devices in hand
- Break it apart and identify every component

Semi non-intrusive forensics

- Devices in hand but not to break it apart
- Design test conditions and inputs to improve estimation accuracy

Completely non-intrusive forensics

- Products /devices not in hand
- Sample outputs from devices available

Forensic Estimation and Identification

Establish a processing model and estimate parameters

- Small # possibilities => exhaustive search or by classifier design
- More continuous valued parameters => analyze based on estimation theory

Example: color interpolation in digital camera

 Approximate by texture classification and linear filter (one set of interp. coeff. for smooth, horizontal & vertical)

- Find best linear estimate of filter coeff. in each class (least-square type of method for robustness)
- Find CFA pattern in a search space that minimizes fitting errors

Vin Wu (UMD): Multimedia Forensics - Fall 2009

Detecting Which Camera Brand Took an Image

- Average accuracy: 90% for 9 camera brands on uncontrolled scenes •
- => Features inspired by component forensics perform better than empirical features: less dependent on input scene, tolerate compression.

	Camera Model		Camera Model
1	Canon Powershot A75	11	Olympus C3100Z/C3020Z
2	Canon Powershot S400	12	Olympus C765UZ
3	Canon Powershot S410	13	Minolta DiMage S304
4	Canon Powershot S1 IS	14	Minolta DiMage F100
5	Canon Powershot G6	15	Casio QV-UX2000
6	Canon EOS Digital REBEL	16	FujiFilm Finepix S3000
7	Nikon E4300	17	FujiFilm Finepix A500
8	Nikon E5400	18	Kodak CX6330
9	Sony Cybershot DSC P7	19	Epson PhotoPC 650
10	Sony Cybershot DSC P72		

E.g.: Noise Features from Wavelet Analysis

Min Wu (UMD): Multimedia Forensics - Fall 2009

Acquisition Forensics: Noise + Interp. Features

Applications in Technology Business Intelligence

Quantitative assessment on similarity & differences of major components

2003

2004

2005

Year

Canon Powershot S400

Powershot S410

18

Canon

A95

Canon A75

Canon A85

• Between brands

 High similarity suggests either Licensing or potential IP Infringement

=> Improve efficiency + efficacy from existing practice using soft/hardware documentation

- Evolution Forensics
 - Different models over time/price tier

What remain the same? -> Facilitate companies to understand competitors' technologies and dayelon

competitors' technologies and develop alliance strategies for future innovations

Min Wu (UMD): Multimedia Forensics - Fall 2009

Many Forms of "Digital Fingerprint"

Many types of fingerprints for multimedia protection & management

I. C. E.

Embedded Fingerprint

Embed unique ID/signal as digital fingerprints to track individual copy and trace unauthorized use

Content-based Fingerprint

Compact content signature for content identification, and also useful for secure watermarking and content authentication

Intrinsic Fingerprint

Examine inherent traces left on multimedia by device or processing – Provide non-intrusive forensics to determine origin, integrity, etc.

Min Wu (UMD): Multimedia Forensics - Fall 2009

19

"Fingerprints" from Media Content

Content Fingerprints: a compact, robust, and unique representation of multimedia data

- Internet opens up new ways to share multimedia
 - ⇒ Concerns about copyright infringement

⇒ Need better techniques to manage

How to help online multimedia communities flourish legally?

Enable automatic identification of multimedia?

• Enormous volume of multimedia content generated

Shazam app for iPhone

Design and Modeling Framework for Content FP

Learn More from Poster Session and Online

• Digital Image Forensics

- Multimedia Content Identification
- Multimedia Fingerprinting & Traitor Tracing
- Privacy-Preserving Multimedia Retrieval

http://www.ece.umd.edu/~minwu/research.html

Min Wu (UMD): Multimedia Forensics - Fall 2009

25